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Abstract. Wetlands play a key role in hydrological and bio-
geochemical cycles and provide multiple ecosystem services
to society. However, reliable data on the extent of global
inundated areas and the magnitude of their contribution to
local hydrological dynamics remain surprisingly uncertain.
Global hydrological models and land surface models (LSMs)
include only the most major inundation sources and mech-
anisms; therefore, quantifying the uncertainties in available
data sources remains a challenge. We address these prob-
lems by taking a leading global data product on inunda-
tion extents (Global Inundation Extent from Multi-Satellites,
GIEMS) and matching against predictions from a global
hydrodynamic model (Catchment-based Macro-scale Flood-
plain – CaMa-Flood) driven by runoff data generated by a
land surface model (Joint UK Land and Environment Sim-
ulator, JULES). The ability of the model to reproduce pat-
terns and dynamics shown by the observational product is
assessed in a number of case studies across the tropics, which
show that it performs well in large wetland regions, with
a good match between corresponding seasonal cycles. At a
finer spatial scale, we found that water inputs (e.g. ground-
water inflow to wetland) became underestimated in compar-
ison to water outputs (e.g. infiltration and evaporation from
wetland) in some wetlands (e.g. Sudd, Tonlé Sap), and the
opposite occurred in others (e.g. Okavango) in our model

predictions. We also found evidence for an underestimation
of low levels of inundation in our satellite-based inundation
data (approx. 10 % of total inundation may not be recorded).
Additionally, some wetlands display a clear spatial displace-
ment between observed and simulated inundation as a result
of overestimation or underestimation of overbank flooding
upstream. This study provides timely information on inher-
ent biases in inundation prediction and observation that can
contribute to our current ability to make critical predictions
of inundation events at both regional and global levels.

1 Introduction

Wetlands and other inundated areas make up 6 %–8 % of the
terrestrial ice-free land surface (Mitsch and Gosselink, 2000,
2015; Junk et al., 2013). However, this percentage greatly
underestimates their importance to the global climate system
(WMO, 2019) and to human society (Mitsch and Gosselink,
2000). Wetlands, including peatlands (bogs and fens), min-
eral soil wetlands (swamps and marshes), and seasonal or
permanent floodplains play a key role in hydrological and
biogeochemical cycles, are home to a large part of global
biodiversity, and provide value to human society in the form
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of multiple ecosystem services (Junk et al., 2013). Most sig-
nificantly, wetlands and other inundated areas

i. provide a spectrum of ecosystem services to human so-
ciety, including filtering of pollutants, maintenance of
buffers against flood damage, reduction of soil erosion,
biodiversity protection, and recreational opportunities
(Mitsch and Gosselink, 2015; Junk et al., 2013; Maltby
and Barker, 2009),

ii. are the most significant natural source of atmospheric
methane (CH4), contributing 20 %–31 % of global
emissions of this highly potent greenhouse gas (Saunois
et al., 2020), and

iii. mediate latent heat exchange between the atmosphere
and the land surface, thereby greatly affecting the oc-
currence of deep convection and meso-scale precipita-
tion systems (Taylor, 2010; Prigent et al., 2011; Tay-
lor et al., 2018), with implications for the availability of
freshwater resources (WMO, 2019).

1.1 Inundation extent

Inundation extent is a key impact variable related to wet-
land dynamics produced by hydrological models and is cal-
culated from a sequence of water balance calculations car-
ried out over the course of the water cycle (at canopy level,
ground level, etc.) (Hewlett, 1982; Sutcliffe, 2004). Precipi-
tation received at the land surface is divided at the top of any
vegetation canopy (canopy interception, dividing into canopy
storage, throughfall and canopy evaporation, e.g. Best et al.,
2011) and then again at the ground surface (dividing into in-
filtration to soil water and groundwater, soil evaporation, sur-
face ponding and runoff). Heavy or persistent precipitation
events may cause surface water (pluvial) flooding (high lev-
els of surface ponding), resulting in higher runoff into local
water courses. Once contained in water channels, most water
flows along the river network to the ocean (river routing), but
high river flows may exceed channel capacity downstream,
producing an areal extent of inundated water (overbank in-
undation). Land surface inundation, if it occurs, is greater or
lesser as a result of a balance between all of these factors.

Globally, we consider wetlands defined in the widest
sense of any permanently or temporarily inundated area
outside permanent water bodies (Ramsar, 2016). Wetlands
may be divided according to their hydrotopographical con-
text (Wheeler and Shaw, 1995) into groundwater-maintained
or groundwater-fed wetlands, where the effects of ground-
water dominate over other processes (e.g. fens, the de-
pressional wetlands of USEPA, 2002, the non-flooded wet-
lands of Miguez-Macho and Fan, 2012, or the groundwater-
dependent wetlands of Froend et al., 2016), and fluvial
inundation-maintained wetlands, where their existence de-
pends primarily on their proximity to a water course that reg-
ularly overtops its banks (e.g. igapó and várzea forests of the

Brazilian Amazon, Pires and Prance, 1985). Seasonally vary-
ing levels of inundation are primarily dependent on upstream
precipitation and how this translates into these two forms of
inflow and secondarily on the ambient rates of evaporation
and infiltration (Marthews et al., 2019; Clark et al., 2015;
d’Orgeval et al., 2008). Further classification of wetlands in
terms of vegetation or substrate is not required for our study
(but see Wheeler and Shaw, 1995, USEPA, 2002, Gerbeaux
et al., 2018, and Ramsar, 2016). The characterization of the
variation of inundation as a result of the cycles and variability
of all these processes is the primary challenge in simulating
and predicting inundation (Yamazaki et al., 2011).

1.2 Uncertainty in observations

Much of the uncertainty in the magnitude of important fluxes
related to wetlands is attributable to the wide range of esti-
mates of global inundated areas (Parker et al., 2020; Aires
et al., 2018; Melton et al., 2013; Tootchi et al., 2019; Pham-
Duc et al., 2017; Hu et al., 2017). The importance of reduc-
ing this uncertainty has long been known from the perspec-
tive of policymakers concerned with implementing natural
flood management plans (Dadson et al., 2017; Moomaw et
al., 2018; Junk et al., 2013) or working in regions where wa-
ter resources are under threat (Mitsch and Gosselink, 2000;
Vörösmarty et al., 2010). Over the last decade, this has addi-
tionally been recognized more widely in the scientific com-
munity in terms of predictions of climate change (Zhao et al.,
2017; Thirel et al., 2015), but progress has been relatively
slow because of the challenge of simultaneously improving
both our observations and our predictions of global inunda-
tion extents.

Assessing the precise extent of natural wetlands and other
inundated areas from remote sensing remains challenging
across large regions (Dutra et al., 2015), especially in the
context of constraining process models that produce esti-
mates of wetland extent (see the discussion in Saunois et al.,
2020). Observational uncertainty depends on the form of in-
undation (e.g. deep vs. shallow, colder vs. warmer water) and
ambient conditions (e.g. flooding occurring during a storm
under cloud cover vs. from snowmelt under clear conditions
or occurring during night vs. day hours). Additionally, there
are the more general uncertainties in remote sensing products
stemming from thresholding assumptions and/or composit-
ing (e.g. see Liang and Liu, 2020). Uncertainty in inunda-
tion extent observations continues to be an issue in any study
based on remote sensing data; e.g. this uncertainty has re-
cently been shown to be the most significant factor in global
CH4 budget uncertainty (Parker et al., 2020).

1.3 Uncertainty in model predictions

Many hydrologic models exist that are capable of simulat-
ing flood inundation; however, these models differ greatly in
their sophistication, the breadth of water cycle processes in-
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cluded, and their optimal scale of application (Dutta et al.,
2000; Beck et al., 2017a; Clark et al., 2015, 2017; Davison
et al., 2016). Inundation models seldom include all forms
of inundation and hydrological processes (Davison et al.,
2016; Clark et al., 2015), and the absence of even one pro-
cess can lead to significant underestimation of inundation ex-
tent (e.g. as found by Parker et al., 2018, for the process of
overbank inundation). The storage and conveyance of wa-
ter in lakes, floodplains, groundwater and river channels, es-
pecially, are generally simulated only with relatively high
uncertainty in the current generation of land surface mod-
els (LSMs) (Marthews et al., 2019, 2020).

Most hydrological models are run uncoupled from the
atmosphere and are therefore reliant on the availability of
high-quality precipitation and other atmospheric driving data
obtained from independent sources. Uncertainties in the
precipitation-driving data may often be very significant and
larger than the total uncertainty inherent within the model
being run (Marthews et al., 2020). Previous studies have at-
tempted to validate global hydrology models against global
hydrology products (e.g. Beck et al., 2017a). However, many
such studies evaluated only runoff or river flow against cor-
responding models (e.g. Zhao et al., 2017), without consid-
eration of the areal extent of inundation as we have done in
this study.

1.4 Model and study area selection

The Catchment-based Macro-scale Floodplain global flood
simulation model (CaMa-Flood) was selected for our predic-
tions of inundation extents because of its sophistication and
the fact that it is already widely used (see Hoch and Trigg,
2019, Zhao et al., 2017, and references therein). CaMa-Flood
is the only open-source global river routing model that is
based on the local inertial approximation of the Saint-Venant
equations (Bates et al., 2010; Dutta et al., 2000; Yamazaki et
al., 2013; Fassoni-Andrade et al., 2018), which takes into ac-
count the backwater effects of downstream elements, i.e. the
possible reversal of flow in particular reaches upstream from
e.g. lakes, tributaries, and estuaries (Hidayat et al., 2011).
By including these effects, CaMa-Flood is able to produce
a much better characterization of many wetlands whose dy-
namics are dominated by surface water inundation.

CaMa-Flood requires runoff data for its simulations,
which we obtained from runs of the UK Joint UK Land
Environment Simulator (JULES) land surface model car-
ried out previously through the EU eartH2Observe project
(Schellekens et al., 2017; Sterk et al., 2020). We chose to use
this JULES-based dataset because uncertainty in water cycle
quantities for JULES was comparable to any other equiva-
lent land surface model (Marthews et al., 2020) and because
streamflow and runoff data produced by this model have al-
ready been validated at regional (Martínez-de la Torre et al.,
2019) and global (Arduini et al., 2017) levels. Additionally,
through using these models, our results can contribute to the

current effort to include global flood inundation in the JULES
model itself (Dadson et al., 2021; Lewis et al., 2018, 2019).

Our comparison of model and observational data is based
on the observed Global Inundation Extent from Multi-
Satellites Version 2.0 (GIEMS-2) dataset (Prigent et al.,
2007, 2020). We analysed the tropical zone (23.5◦ S to
23.5◦ N, excluding small oceanic islands) at a resolution of
0.25◦ in both latitude and longitude (Fig. 1). We have taken
a case study approach (Table 1), where our wetland areas
were selected on the basis of being the largest extant global
wetlands, with two limitations. Firstly, we avoided regions
with significant inundation on frozen and partially frozen
land because GIEMS does not account for frozen water, and
areas with significant snowfall are systematically masked as
well (Prigent et al., 2007). Secondly, coastal or tidal wetlands
were also avoided because their interactions with the ocean
cannot currently be simulated by JULES or CaMa-Flood.
Because of the preponderance of coastal occurrence across
subtropical and temperate wetlands (Gumbricht et al., 2017;
Melton et al., 2013), with these two limitations all remaining
large wetlands were in the tropical zone (23.5◦ S to 23.5◦ N).

In this study, we ask the following questions.

1. How well can the CaMa-Flood model, driven by JULES
runoff data at 0.25◦ resolution, simulate observed global
inundated extents, as given by GIEMS satellite-based
data?

2. Can an improved match between observed and pre-
dicted inundation be obtained by simple transforma-
tions, e.g. removing low/high observed values or adding
a constant to all predicted inundation fractions?

3. Are these simple transformations dependent on spatial
scale (e.g. regional vs. subcontinental)?

Answering these questions will highlight both the strengths
and weaknesses of the JULES-CaMa-Flood approach to
global inundation prediction and indicate possible directions
where improvements may be made in modelling predictive
capability in global wetlands.

2 Methods

Observed and simulated inundation extents were com-
pared at a global resolution of 0.25◦× 0.25◦ (approximately
25 km× 25 km at the Equator).

2.1 Observed inundation extents

Observational data on monthly global inundation fraction
were obtained from GIEMS-2 (Prigent et al., 2020), which is
considered to be one of the best widely available global prod-
ucts of inundation extents and captures water under vegeta-
tion very well (Hu et al., 2017; Pham-Duc et al., 2017). Data
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Figure 1. Tropical wetlands and inundated areas referred to in this study.

were regridded to a regular spatial resolution of 0.25◦×0.25◦

to enable comparison to model outputs.
GIEMS is mainly derived from passive microwave obser-

vations (Special Sensor Microwave/Imager, SSM/I), with the
help of active microwave and visible and near-infrared re-
flectance observations (Advanced Very High Resolution Ra-
diometer, AVHRR) to eliminate ambiguities in surface water
detection and to account for the potential contribution of veg-
etation (Prigent et al., 2007, 2020). GIEMS can detect inun-
dation of both natural wetland and irrigated agricultural ar-
eas. Frozen surfaces are excluded. In unfrozen areas, the ac-
curacy of GIEMS has been comprehensively verified (Papa et
al., 2006, 2010), and it is a very widely used remote sensing
product (Zhang et al., 2016; Taylor et al., 2018). Therefore,
we suggest that it forms an appropriate benchmark dataset
for global modelling studies.

2.2 Simulated inundation extents

Model-derived inundation extents were produced by a se-
quentially executed run of two models referred to here as
JULES-CaMa-Flood.

2.2.1 Validation of land surface runoff

Predictions of land surface runoff were obtained from the
JULES land surface model (https://jules.jchmr.org/, last ac-
cess: 20 June 2022) (Best et al., 2011; Clark et al., 2011)
by accessing simulations carried out previously through the
EU eartH2Observe project (Schellekens et al., 2017; Sterk et
al., 2020; Marthews et al., 2020). A description of the hydro-
logical simulation approach and water balance calculations
in JULES is given in Martínez-de la Torre et al. (2019) and

Blyth et al. (2019). As discussed in Marthews et al. (2020),
uncertainties in the precipitation driving data may often be
significant, so we selected Multi-Source Weighted-Ensemble
Precipitation (MSWEP), currently considered the best avail-
able global precipitation product at this spatial resolution
(Beck et al., 2017b; Marthews et al., 2020). The model con-
figuration used for JULES was global Water Resources Re-
analysis Tier 2 (WRR2) (Fink and Martínez-de la Torre,
2017). Arduini et al. (2017) analysed runoff data from an
ensemble of land surface models including JULES both at
a global level and for the Amazon in particular, finding
that JULES was not an outlier in relation to other models,
performing well in terms of both annual cycle and year-
on-year trends. Marthews et al. (2020) analysed the same
eartH2Observe ensemble on a region-by-region basis, find-
ing that the causes of higher model uncertainty operated dif-
ferentially in wet and dry environments, with wetter environ-
ments being modelled with less uncertainty than dry envi-
ronments. This supports our focus on global wetlands in this
study and our use of JULES-derived runoff data.

2.2.2 Validation of land surface inundation

Daily runoff data from JULES were used to drive the CaMa-
Flood v3.9.6a flood inundation model (version Novem-
ber 2019) (Yamazaki et al., 2009, 2011) to produce predic-
tions of surface inundation at all points. CaMa-Flood was run
with a timestep length of 1 min, and the outputs were aver-
aged to produce monthly output data. CaMa-Flood was set to
calculate river discharges and flow velocities using the local
inertial equation along its river network map in order to in-
clude backwater effects (Bates et al., 2010; Yamazaki et al.,

Hydrol. Earth Syst. Sci., 26, 3151–3175, 2022 https://doi.org/10.5194/hess-26-3151-2022
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Table 1. The wetland case study areas. Total tropical land area is approx. 56 000 000 km2 (approx. 38 % of total global land).

Site Location Surface area

Pantanal The Pantanal (Brazil, Varies up to 220 000 km2 (Parker et al., 2018)
Bolivia, Paraguay)
22.0◦ S to 14.8◦ N, 61.1 to
54.6◦W

Niger Inland The Inner Niger Delta Varies up to 80 000 km2 (Dadson et al., 2010; Bergé-Nguyen and
Delta wetland (Mali) Crétaux, 2015; Haque et al., 2020; Balek, 1977; Andersen et al.,

13.6 to 17.1◦ N, 5.2 to 2.8◦W 2005)

Sudd The Sudd (South Sudan) Varies up to 64 000 km2 (Balek, 1977; Mohamed and Savenije,
4.5 to 10.0◦ N, 28.0 to 33.0◦ E 2014; Sutcliffe and Parks, 1999; Tootchi et al., 2019), including the

Bahr el Ghazal to the west and the Machar marshes to the east.

Okavango The Okavango wetlands Varies up to 38 000 km2 (the main delta north-west of Maun varies up to
(Botswana) 22 000 km2 and the Makgadikgadi pans are an additional 16 000
24.0 to 16.0◦ S, 19.0 to 27.0◦ E km2) (Milzow et al., 2009; Wolski et al., 2012)

Tonlé Sap Tonlé Sap wetland Varies up to 16 000 km2 (Sithirith, 2015)
(Cambodia)
11.6 to 13.6◦ N, 103.0 to 105.1◦ E

Amazon The central Amazon Approx. 1 900 000 km2 (Yamazaki et al., 2011; Gedney et al.,
(Brazil, Colombia, Peru) 2019)
15.0◦ S to 7.0◦ N, 75.0 to
47.0◦W

Congo The Congo Cuvette Approx. 1 000 000 km2 (Alsdorf et al., 2016; Betbeder et al., 2014;
Centrale (D. R. Congo, Balek, 1977)
Congo-Brazzaville)
3.2◦ S to 3.6◦ N, 14.6 to
25.2◦ E

Neotropics 23.5◦ S to 23.5◦ N, 110.4 to Approx. 18 000 000 km2 land area (Malhi, 2010)
34.6◦W

Western Tropical Africa and Arabia Approx. 21 000 000 km2 land area
paleotropics 23.5◦ S to 23.5◦ N, 17.6◦W

to 64.0◦ E

Eastern India to New Guinea Approx. 17 000 000 km2 land area
paleotropics 23.5◦ S to 23.5◦ N, 64.0 to

153.5◦ E

2011, 2013). In order to compare more easily to observations
on a regular grid, our CaMa-Flood simulations were in fully
grid-based mode rather than using irregularly shaped catch-
ments (Yamazaki et al., 2009, 2011). CaMa-Flood’s options
for bifurcating flows within the model were not activated for
these simulations (Yamazaki et al., 2014): we focus on water
balance in our analysis (which should be negligibly affected
by river braiding and other bifurcations).

3 Analysis

The period for which eartH2Observe and GIEMS-2 data
overlap is 1992–2014, so we used this period for all our

analyses. All post-processing steps were carried out us-
ing NetCDF Operator (NCO) tools v.4.4.5 (Zender, 2008)
and the R v.4.0.2 statistical language environment (R Core
Team, 2021). For the R-based analyses, packages maps,
rgeos (v.0.5-3), GEOS runtime (v.3.8.0), and rgdal (v.1.5-12)
were required.

3.1 Evaluation metrics

We applied the two most common efficiency statistics used
in the context of river flow analysis: the Nash–Sutcliffe ef-
ficiency (NSE) and Kling–Gupta efficiency (KGE), both of
which measure the alignment between model results and ob-
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servations (Table 2). KGE is based on a decomposition of
NSE into its constitutive components (correlation, variability
bias, and mean bias) and addresses several perceived short-
comings in NSE (Knoben et al., 2019).

Our focus in this study is wetlands, and therefore we ex-
cluded areas of very high inundation (permanent lakes and
reservoirs), which were always 100 % inundated in both ob-
served and simulated data because of substitution from the
Global Lakes and Wetlands Database, GLWD (Lehner and
Döll, 2004), and also areas of continuously low or zero inun-
dation (dry areas in the validation region, which would also
provide a constant match between observed and simulated ar-
eas; see e.g. Bernhofen et al., 2018). Our focus on variability
measures ensured that our match statistics were dominated
by the regular (seasonal) and irregular cycles occurring at
points where inundation was not constant, i.e. wetland re-
gions sensu stricto.

3.2 Transforming inundation extents

When comparing the observed and simulated inundation ex-
tents, it can happen that inundation predicted by JULES-
CaMa-Flood is not observed by GIEMS. Based on the data
we have, it is not possible to be certain whether this “low-
level” inundation shows some kind of bias towards overpre-
diction on the part of the model or perhaps inundation actu-
ally occurred but was unobserved by GIEMS (see e.g. Liang
and Liu, 2020, for a discussion on the limitations of the
satellite-based sensors employed). In order to test this, during
our analysis we posit a non-zero, minimum level of inunda-
tion fraction αmin, below which GIEMS always returns a zero
result.

It is also possible that there is a maximum inundated frac-
tion (here called αmax) above which GIEMS loses its sen-
sitivity (i.e. possibly GIEMS can differentiate well between
20 % and 30 % inundation but not as reliably between 70 %
and 80 %). This may possibly happen because vegetation
canopy cover obscures inundation occurring beneath it, and
the magnitude of this effect will depend on canopy coverage
and the density of the canopy concerned, among other fac-
tors (GIEMS is capable of detecting some water under dense
vegetation but with high uncertainty, especially when the dis-
tribution of inundation within the grid cell is highly skewed,
i.e. small dry areas within a very wet grid cell or vice versa)
(Prigent et al., 2020).

Finally, it may also be the case that our predictions of in-
undated fraction have a systematic bias (underestimation or
overestimation, on a grid cell-by-grid cell basis). In order
to test this, we introduce a fraction β which is added to all
CaMa-Flood outputs of flooded fraction (fldfrc). In summary,
we can modify the GIEMS data and CaMa-Flood outputs ac-
cording to the simple transformations in Fig. 2 in order to
investigate and quantify bias in both our simulated and ob-
served data.

4 Results

Results are presented in a sequence of case study areas, be-
ginning with the Sudd, Pantanal, Tonlé Sap, Inner Niger
Delta and Okavango wetlands before moving to the larger,
subcontinental wetland complexes of the central Amazon and
the Congo Cuvette. Straight comparisons between observa-
tions and model predictions of inundation show a compli-
cated pattern of partial overlap that is challenging to assess
visually (Fig. 3); therefore, we calculate appropriate statistics
across all case study areas.

4.1 Inundation extent

GIEMS observations and JULES-CaMa-Flood predictions
match very variably: monthly average inundation extent
shows a clear bias in most study wetlands, and in addition
there is significant year-on-year variability (Fig. 4). How-
ever, the direction of bias is not consistent between wetlands.
NSE and KGE scores were calculated for each wetland study
area in order to be able to compare consistently the match
between simulated and observed wetland and inundation ex-
tents. NSE and KGE are metrics based on calculations of er-
ror (normalized root-mean-squared error, nRMSE) and cor-
relation (Pearson’s r correlation coefficient) (Table 2). We
do not report calculated values of nRMSE or Pearson’s r be-
cause plots of these statistics contained no information not
visible on the corresponding plots of NSE and KGE.

Because of our grid-cell-based approach, we could apply
our NSE and KGE calculations in a distributed way across
each case study wetland. These scores are most usually used
in relation to discharge data, yielding generally only one time
series per catchment (see Supplement), but our inundation
estimates at every grid cell enabled us to calculate efficiency
on a grid cell-by-grid cell basis in each of our study areas
(Fig. 5). Averaged efficiency scores are generally high across
each individual wetland although lower in parts of the wet-
lands that have the most dynamic flow regime.

However, NSE and KGE are not capable of measuring
some important aspects of the flow regime, most notably spa-
tial displacement of inundation, which might indicate that
inundation input is overestimated in one area by the model
at the expense of underestimation elsewhere, or, alterna-
tively, might indicate that inundation inputs have been cor-
rectly calculated at all points, but an underestimated flow
speed produces inundation at an incorrect location. For ex-
ample, the Inner Niger Delta wetland shows apparent spa-
tial displacement between observed and simulated inunda-
tion: GIEMS reports negligible inundation north of 15.5◦ N
in any month (a result broadly in line with the finer-scale
analysis of Bergé-Nguyen and Crétaux, 2015), even though
CaMa-Flood predicts inundation reaching as far as Timbuktu
at 16.5◦ N (Fig. 3). At this spatial resolution, 1◦ latitude is
well resolved, so this is a significant mismatch.
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Table 2. Efficiency metrics widely used in flood model assessment and forecast verification (Knoben et al., 2019). In all the equations, Q
is the flow variable (e.g. discharge) over time steps t = 1, . . . , T . Subscripts “obs” and “sim” refer to observed and model-predicted values,

respectively, µobs =Qobs is the observation mean, σobs =
√

1
N−1

∑
t

(
Qobs(t)−Qobs

)2 is the standard deviation (and similarly for µsim and

σsim), and r is the Pearson correlation coefficient between observed and simulated values.

Evaluation metric Equation Description

Nash–

NSE= 1−

∑
t
(Qsim(t)−Qobs(t))

2

∑
t

(
Qobs(t)−Qobs

)2

Standard thresholds for NSE (but see Supplement)
Sutcliffe 1.0: perfect alignment
efficiency > 0.5: good alignment (Knoben et al., 2019;
(NSE)a Decharme et al., 2012) (although some other authors

specify> 0.6, e.g. Martínez-de la Torre et al., 2019)
0.0: no predictive skill (mean of observations
provides as good an estimate as simulations)
< 0.0: increasing divergence between simulations
and observations
Note that in this study points of very low inundation
(dry areas sensu Bernhofen et al., 2018) and very
high inundation (permanent lakes and reservoirs)
were removed before calculating NSE (because of
the requirement to have at least some flow variability
for the calculation); therefore, our NSE values were
slightly lower than usual. Our analysis rests on
relative rather than absolute values of NSE, so our
results are unaffected by this, but for clarity of
comparison between sites we have used a
consistent colour scale on all NSE plots based on the
standard thresholds.

Kling–Gupta

KGE= 1−

√
(r − 1)2+

(
σsim
σobs
− 1

)2
+

(
µsim
µobs
− 1

)2

Standard thresholds for KGE:
efficiency 1.00: ideal model performance

(KGE)b >
(

1− 1√
2
=

)
0.29: good performance

(Knoben et al., 2019)
(1−
√

2=)− 0.41: no predictive skill (mean of
observations provides as good an estimate as
simulations. NB: negative values above this
threshold still indicate that a model is an
improvement over the mean flow benchmark)
(Knoben et al., 2019).
<−0.41: increasing divergence between simulations
and observations
Note that in this study points of very low inundation
(dry areas sensu Bernhofen et al., 2018) and very
high inundation (permanent lakes and reservoirs)
were removed before calculating KGE (because of
the requirement to have at least some flow variability
for the calculation); therefore, our KGE values were
slightly lower than usual. Our analysis rests on
relative rather than absolute values of KGE, so our
results are unaffected by this, but for clarity of
comparison between sites we have used a
consistent colour scale on all KGE plots based on the
standard thresholds.

a NB: both NSE and KGE are uncorrected for the magnitude of the variability of the observations σobs (see Supplement). b NB: KGE without the penalty terms (in µ and σ )

reduces simply to Pearson’s correlation coefficient (NB: the positive root is 1− r rather than r − 1):
cov

(
Qsim(t),Qobs(t)

)
σsimσobs

=
1

N−1

√∑
t

((
Qsim(t)−Qsim

)(
Qobs(t)−Qobs

))
σsimσobs

.
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Figure 2. Transforming the GIEMS inundated fraction (inunfrac) data (a) and CaMa-Flood output flooded fraction (fldfrc) variable (b). Note
that values αmin = β = 0.0 and αmax = 1.0 are equivalent to making no modification.

4.2 Identifying an optimal transformation of GIEMS
observations and JULES-CaMa-Flood predictions

Varying the values of the three parameters αmin, αmax and β
(see Fig. 2), we searched for an optimal value of each that
brought our observed and simulated data as close together
as possible, in order to quantify and therefore help under-
stand the discrepancy between our model result and the (un-
certain) observations. By repeating the calculations that pro-
duced Fig. 5 for an exhaustive range of parameter combina-
tions of αmin, αmax and β, the state space plots in Fig. 6 were
produced. A notably higher value for NSE or KGE for a par-
ticular combination of αmin, β and αmax identifies a consis-
tent bias in either the model predictions or the observations
(or both).

The visible maxima on our state space plots provide a best
estimate of the optimal values of these parameters, with these
optima differing markedly between our wetland study areas
(Fig. 7). We found that αmin took a non-zero value ∼ 10 %
across most of our study wetlands (Fig. 7) but found no
evidence to suggest that αmax should consistently take any
value< 1.0 for any of our wetlands (Fig. 6; i.e. we found no
evidence that the GIEMS-2 inundation extents overestimated
inundated fraction in grid cells where inundation covered a
large percentage of the spatial cell).

We found high variation in the estimated value of
β for each wetland; i.e. adding a consistent constant
fraction of inundation extent to all grid cells within
the limits of each study wetland did indeed provide
a closer match between observations and simulation,
at least in the wetlands we considered in this study
(Fig. 7). Defining waterin= (channel+ surface+ subsurface
inflow+ precipitation) and waterout= (infiltration+ evapo-

ration), we suggest that the negative values of βopt in the
Amazon, Tonlé Sap, Sudd and Inner Niger Delta show
probable underestimation of hydrological output by JULES-
CaMa-Flood (waterout) (Fig. 7). Conversely, the positive val-
ues of βopt in the Okavango show probable underestima-
tion of hydrological input by JULES-CaMa-Flood (waterin)
(Fig. 7).

Finally, we note the specificity of our results to the time
period 1992–2014. Carrying out this analysis for an earlier
or a later period would most likely have yielded different es-
timates of NSE, KGE, αmin, αmax and β. However, we sug-
gest that, without significant climate change or perhaps sig-
nificant anthropogenic modification of the wetland area con-
cerned, the values of these statistics should remain similar to
the values calculated here.

5 Discussion

There has recently been significant progress in our under-
standing of wetlands and the roles they play in climate pro-
cesses, land surface processes and their impacts on human
society (Saunois et al., 2020; IPCC, 2014; Mitsch and Gos-
selink, 2015; Moomaw et al., 2018). However, even though
the physics of flood inundation is relatively well known (Ya-
mazaki et al., 2013; Bates et al., 2010; Fassoni-Andrade et
al., 2018), many hydrological processes relevant to the repre-
sentation of flooding in Earth system models remain poorly
characterized at the high resolutions required to address is-
sues of local and regional impact (Marthews et al., 2019;
Zhou et al., 2021a; Bierkens, 2015; Clark et al., 2015), in-
cluding infiltration (d’Orgeval et al., 2008; Clark et al., 2015)
and evaporation (Robinson et al., 2017; d’Orgeval et al.,
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Figure 3.

2008) of flood waters as well as groundwater effects (Clark
et al., 2015).

In this study, we have simulated inundation extent at a spa-
tial resolution high enough to resolve the major details of
most major global wetlands. These results are potentially of

great use to a wide audience of academic and non-academic
users interested in the broad-scale impacts of environmental
change in wetlands, especially where seasonal inundation af-
fects water and energy fluxes in Earth system models. It is
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Figure 3.
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Figure 3. Fraction of grid cells inundated (in addition to water contained in channels and watercourses, which are not shown) in each study
area. Superposed lakes and reservoirs are from the Global Lakes and Wetlands Database, GLWD (Lehner and Döll, 2004). Resolution is
0.25◦ in both latitude and longitude (NB: Tonlé Sap is our smallest wetland, and therefore the grid cells are relatively large in that plot).
View window extent is taken from references in Table 1. Cities with populations> 100 000 are shown (SimpleMaps, 2019) for view extents
up to 2 000 000 km2. Data shown are an average for 1992–2014 from GIEMS-2 observations (left-hand-side panels) and equivalent JULES-
CaMa-Flood simulations (right-hand-side panels).
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Figure 4. Seasonal variation in inundation across the study wetlands, averaged across the years 1992–2014: red: observations (GIEMS);
blue: simulated (JULES-CaMa-Flood). The three main tropical zones are not shown because they include areas both north and south of the
Equator.

therefore appropriate to seek as robust a validation of these
predictions as possible.

5.1 Comparing simulated and observed global
inundated extents

We found that our simulated inundation extents (from the
CaMa-Flood model, driven by JULES runoff data at 0.25◦

resolution) sometimes compared very closely to our observed
data (from GIEMS satellite-based data), but at many points
there were divergences. For example, in the Sudd wetland,
our model appears to overpredict inundation, whereas in the
Pantanal wetland it appears to underpredict inundation. Can
we explain these and other differences between GIEMS ob-
servations and our model predictions?
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Figure 5.

CaMa-Flood flood extent and GIEMS wetland extents do
capture slightly different water surfaces. CaMa-Flood is most
accurate in representing river-originated, fluvial flooding,
and water surfaces not well connected to rivers have higher
uncertainty (e.g. water bodies in local depressions due to
rain-fed pluvial flooding). Additionally, GIEMS may over-
estimate the surface water extent in very wet areas (e.g. soils
close to saturation but without a standing water surface).

In order to investigate these divergences, we applied sim-
ple transformations to our data, and the optimal values of the

three parameters αmin, αmax and β we found for each wet-
land provide robust explanations for observable differences.
We found that our predictions of inundation extent could be
improved at local or regional scale by simple transformations
involving the three parameters αmin, αmax and β. Moreover,
in what follows we use our diagnosis of these differences
to highlight opportunities to improve the representation of
physical processes in land surface and large-scale hydrody-
namic models.
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Figure 5.
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Figure 5. Mapped values for efficiency statistics based on inundated grid-cell fraction, averaged across the years 1992–2014 (with αmin =
0.0, β = 0.0 and αmax = 1.0) (white indicates no value could be calculated).

We found evidence that αmin might generally take a non-
zero value∼ 10 % across tropical inundated areas, indicating
that GIEMS-2 may be underestimating widely distributed oc-
currences of low inundation within these wetlands, as sug-
gested by previous studies (Prigent et al., 2007). GIEMS
may underestimate low levels of inundation that occur out-
side wetlands because of uncertainties in estimating inunda-
tion, e.g. below intact forest canopies (although small in any
particular location, these would sum to a significant missing
term in regional and continental water budgets).

We found high variation in the estimated value of
β for each wetland, i.e. the constant fraction of in-
undation extent that must be added to all grid cells
within the limits of each study wetland to elicit the
closest match between observations and simulation.
Defining waterin= (channel+ surface+ subsurface in-
flow+ precipitation) and waterout= (infiltration + evapo-
ration), we found in this study that some wetlands show
underestimation of hydrological output by JULES-CaMa-
Flood (waterout) (e.g. Amazon, Tonlé Sap, Sudd and
Niger Inland Delta), whereas some show underestimation
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Figure 6.

of hydrological input by JULES-CaMa-Flood (waterin)
(e.g. Okavango). From a basic comparison of observed and
modelled inundation extent, it is not possible to identify the
precise combination of climate, season or hydrotopography
that produces these underestimations and overestimations
of water balance in these particular wetlands, but identify-
ing the sign of the imbalance is nevertheless very useful
information for interpreting model predictions in these areas.

The spatial displacement of inundation prediction down-
stream from observed inundation visible especially in our re-
sults for the Inner Niger Delta and the Sudd is a result of
overestimation or underestimation of overbank flooding up-
stream. If overbank flooding is underestimated in our simu-
lation, then the water within the river course (the Niger or
White Nile, respectively, in these cases) will remain in the
river and be taken downstream further than expected, pro-
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Figure 6.
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Figure 6. State space plots for evaluation statistics based on inundated grid-cell fraction, calculated from varying parameters αmin and beta,
with panels showing values of αmax. Each point is the mean of all NSE or KGE values, averaged both over time (years 1992–2014) and over
the wetland region concerned (white indicates no value could be calculated).

ducing a downstream wetland “extension” that exists in the
simulation results but not the observed results (as we see in
our JULES-CaMa-Flood outputs).

5.2 Quantifying bias in JULES-CaMa-Flood
inundation predictions

Uncertainty in our model-derived inundation extents such
as those from JULES-CaMa-Flood simulations is a combi-
nation of uncertainty from various sources, most immedi-
ately, the calculations within CaMa-Flood to predict inunda-
tion extent from runoff but also the runoff calculations within
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Figure 7. Summary of plots in Fig. 6. Optimal values of β and αmin are shown (referred to as βopt and αmin opt in the text), calculated as the
centroids of the maximal region on the KGE plots (black) or NSE plots (red) for each site (with αmax = 1.0) from Fig. 6. On this plot, we
define waterin= (channel+ surface+ subsurface inflow+ precipitation) and waterout= (infiltration+ evaporation). Note that clear maxima
were not present for all case studies for NSE (Fig. 6), but when present they are shown connected to the equivalent maxima for KGE.

JULES and, before that, the precipitation data as well. When
comparing to observational data, a fourth source of uncer-
tainty is bias in observations, i.e. GIEMS-2 in this study.

The JULES-CaMa-Flood modelling sequence used in this
study is an example of “uncoupled routing” where one model
produces the runoff and a second model running separately
calculates inundation, rather than both steps being integrated
into a single model. This has significant advantages in terms
of simplicity and ease of use in comparison to coupled al-
ternatives but also disadvantages, especially in the context of
wetland simulation. For example, in a mixed wetland such as
the Pantanal with water input derived from both groundwater
effects (lateral inflow – in the absence of any visible stream –
from surrounding areas where the water table is higher than
the wetland surface) and fluvial effects (overbank inundation
from a stream or river), the groundwater input will be calcu-
lated by the runoff-generation routine (e.g. JULES), but the
fluvial component will be calculated by the routing/flooding
routine (e.g. CaMa-Flood). Separate simulation of these two
input processes is undesirable, for example because CaMa-
Flood does not calculate runoff and it includes no represen-
tation of a soil column and therefore does not have any ex-
plicit representation of subsurface processes, which means
that important processes such as infiltration, which controls

how wetlands recede in dry spells, can only be represented
very approximately.

Do our optimal values for αmin, αmax and β indicate model
simulation bias in JULES-CaMa-Flood under certain condi-
tions? Perhaps yes: for example, the optimal parameter value
βopt may be understood as an estimate of the amount that is
missing in the overall wetland water balance. For example,
βopt will be negative if evaporation and infiltration are being
significantly underestimated by JULES-CaMa-Flood in this
study area (neither JULES nor CaMa-Flood explicitly mod-
els evaporation from inundated water in their present config-
urations). Conversely, βopt will be positive if e.g. groundwa-
ter inflow is being underestimated. More precisely, the value
of βopt may be thought of as an estimate of how much waterin
is underestimated by JULES-CaMa-Flood minus how much
waterout is underestimated. This estimate indicates model
bias and also provides a measure of the direction and magni-
tude of that bias.

5.3 Implications for the hydrodynamic balance of
wetlands

Wetlands exist as a balance between water input and water
output, (i.e. waterin and waterout above, a landscape-scale
water balance sensu Sutcliffe, 2004). In order to understand
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these and other points of divergence between observation and
prediction, we need to understand this balance calculation in
that particular wetland and also assess which types of wa-
ter bodies are represented in the simulated data (Zhou et al.,
2021a, b).

Categorizing wetlands in terms of positive or negative
βopt would be superficially similar to the division by Junk
et al. (2011) of South American wetlands into fluvial (wet-
lands that are predominantly maintained by river overbank
inundation rather than by groundwater effects) and interflu-
vial wetlands (where groundwater effects dominate); how-
ever, theirs was a distinction based on overall water balance
rather than the balance of water input. In the context of our
analysis here, we understand fluvial and interfluvial wetlands
to mean ones where waterin is dominated by channel/surface
flow or subsurface inflow, respectively. Both fluvial and in-
terfluvial wetlands may of course experience high evapora-
tion rates (e.g. the Inner Niger Delta) or high infiltration rates
(based on underlying soil type) and therefore may occur ei-
ther above or below the y = 0 line in Fig. 7.

5.4 Inundation at subcontinental and larger scales

Looking at subcontinental scales (the Amazon and the
Congo) and larger scales (the three main tropical zones), a
number of additional considerations become more impor-
tant. As with all very large river basins, the inland reaches of
the Amazon and the Congo are collectively enormous wet-
land complexes, with some areas dominated by river flow
and others by topographic factors (e.g. the “cuvette” of the
Congo Cuvette indicates that the whole subcontinent is ap-
proximately a shallow bowl). The same diagnosis of biases
may be carried out over these larger areas, but our opti-
mal value for β generally converges closer and closer to the
“null” value β = 0.0 as larger and larger regions are con-
sidered (at least for regions that do not include significant
coastal or permafrost areas). This is reasonable, because even
the largest wetland areas are localized regions at this scale,
and therefore these optima will be averaged together with an
increasing number of relatively terra firme grid cells (i.e. grid
cells which experience little or no regular inundation) and, at
the largest scales, with entire mountain ranges where little or
no inundation occurs (either in our model or in the observa-
tions).

In addition, we should expect that βopt should converge to
zero at the largest scales because we know that these mod-
els return reliable global estimates (Yamazaki et al., 2011);
therefore, from a global perspective, the magnitude of val-
ues for a particular wetland or wetland complex should be
understood as biases that are balanced out elsewhere. How-
ever, wetland-specific values nevertheless provide useful in-
formation about the inundation processes that dominate in
those particular wetlands and allow us to improve our under-
standing of landscape-scale and continental-scale inundation
hydrodynamics.

5.5 Conclusions

Simulations of inundation extent are important because they
allow us to predict what will happen to globally impor-
tant wetlands in the future. Wetlands are known to be key
nodes in the biosphere system in terms of vulnerability to
climate change (Maltby and Barker, 2009; Mitsch and Gos-
selink, 2015). However, wetlands are also highly dynamic
landscape-level entities produced by the balance of a number
of different water cycle processes acting together (Hewlett,
1982; Sutcliffe, 2004), not all of which are as yet repre-
sented in global hydrodynamic models (Yamazaki et al.,
2011, 2013).

Reducing uncertainty in predictions from large-scale in-
undation models has long been a prerequisite for their use
in global Earth system models. In this study we have shown
that a very reasonable and close match may be derived be-
tween JULES-CaMa-Flood model predictions of inundation
extent and independent GIEMS-2 global satellite-based ob-
servations of inundation. Differences do occur at regional
scale, in particular large wetlands, however, and these dif-
ferences indicate clearly the importance of incorporating
into the modelling framework a better representation of the
hydrological impacts of, especially, infiltration, evaporation
and groundwater-fed inundation. These comments are not
only relevant to GIEMS-2 and JULES-CaMa-Flood data: all
satellite-based inundation data have biases that may be as-
sumed to be very similar to those inherent in GIEMS data,
and all model predictions of inundation have biases and un-
certainties presumably similar to those that are in JULES-
CaMa-Flood predictions (Dutra et al., 2015; Liang and Liu,
2020; Parker et al., 2020; Saunois et al., 2020), so we believe
that our results and analysis provide a blueprint for users of
other model/observational data on how they might assess and
account for these types of bias in their own data.

Improving our understanding of the dynamics of inun-
dated areas and the role they play in the generation of land–
atmosphere fluxes requires a better representation in general
of wetlands within global land surface and hydrodynamic
models (Zhang et al., 2016). The results of this study point
clearly towards the need for greater attention to be paid to hy-
drological dynamics and water cycle processes within these
models, which we expect to result in improved modelling
predictive capability in global wetlands in the future. A firm
focus on producing a better characterization of hydrodynam-
ics within this class of models will produce enormous posi-
tive returns in terms of our global capability to predict inun-
dation and its global impacts and will make a welcome con-
tribution to our preparedness for the impacts of future climate
change (Moomaw et al., 2018; IPCC, 2014).

Code and data availability. All model data used in these analyses
are publicly available via the eartH2Observe Water Cycle Integrator
portal https://wci.earth2observe.eu/ (WCI, 2022). All code used in
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our analysis will be made available on request to the corresponding
author.
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