89 research outputs found

    In vivo robotics: the automation of neuroscience and other intact-system biological fields

    Get PDF
    Robotic and automation technologies have played a huge role in in vitro biological science, having proved critical for scientific endeavors such as genome sequencing and high-throughput screening. Robotic and automation strategies are beginning to play a greater role in in vivo and in situ sciences, especially when it comes to the difficult in vivo experiments required for understanding the neural mechanisms of behavior and disease. In this perspective, we discuss the prospects for robotics and automation to influence neuroscientific and intact-system biology fields. We discuss how robotic innovations might be created to open up new frontiers in basic and applied neuroscience and present a concrete example with our recent automation of in vivo whole-cell patch clamp electrophysiology of neurons in the living mouse brain.National Institutes of Health (U.S.) (Single Cell Grant 1 R01 EY023173)Human Frontier Science Program (Strasbourg, France)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramMIT Media Lab ConsortiumNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (Director's New Innovator Award 1DP2OD002002)National Institutes of Health (U.S.) (EUREKA Award 1R01GM104948)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (CAREER Award CBET 1053233)National Science Foundation (U.S.) (DMS1042134)Paul G. Allen Family Foundation (Distinguished Investigator in Neuroscience Award)Skolkovo Institute of Science and Technolog

    Time capsules of biodiversity: Future research directions for groundwater-dependent ecosystems of the Great Artesian Basin

    Get PDF
    The Great Artesian Basin of Australia represents one of the largest and deepest basins of freshwater on Earth. Thousands of springs fed by the Basin are scattered across Australia’s arid zone, often representing the sole sources of freshwater for thousands of kilometers. As “islands” in the desert, the springs support endemic fauna and flora that have undergone millions of years of evolution in almost total isolation. Here, we review the current body of knowledge surrounding Great Artesian Basin springs and their significance from ecological, evolutionary, and cultural perspectives using South Australian spring wetlands as a case study. We begin by identifying the status of these springs as critical sources of groundwater, the unique biodiversity they support, and their cultural significance to the Arabana people as Traditional Custodians of the land. We then summarize known threats to the springs and their biota, both exogenous and endogenous, and the potential impacts of such processes. Finally, considering the status of these at-risk habitats as time capsules of biodiversity, we discuss lessons that can be learnt from current conservation and management practices in South Australia. We propose key recommendations for improved biodiversity assessment and monitoring of Great Artesian Basin springs nationwide, including 1) enhanced legal protections for spring biota; 2) increased taxonomic funding and capacity; 3) improved biodiversity monitoring methods, and 4) opportunities for reciprocal knowledge-sharing with Aboriginal peoples when conducting biodiversity research.P. G. Beasley-Hall, N. P. Murphy, R. A. King, N. E. White, B. A. Hedges, S. J. B. Cooper, A. D. Austin, and M. T. Guzi

    F-theory Compactifications for Supersymmetric GUTs

    Get PDF
    We construct a family of elliptically fibered Calabi-Yau four-folds Y_4 for F-theory compactifications that realize SU(5) GUTs in the low-energy limit. The three-fold base X_3 of these fibrations is almost Fano and satisfies the topological criteria required to ensure that the U(1)_Y gauge boson remains massless, while allowing a decoupling of GUT and Planck scale physics. We study generic features of these models and the ability to engineer three chiral generations of MSSM matter. Finally, we demonstrate that it is relatively easy to implement the topological conditions required to reproduce certain successful features of local F-theory models, such as the emergence of flavor hierarchies.Comment: 55 pages, 10 figure

    Scavenging in the Anthropocene: Human impact drives vertebrate scavenger species richness at a global scale

    Get PDF
    Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large‐scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion‐consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species‐poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human‐impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As speciesrich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human‐dominated landscapes in the Anthropocene

    J-PLUS: The javalambre photometric local universe survey

    Get PDF
    ABSTRACT: TheJavalambrePhotometric Local UniverseSurvey (J-PLUS )isanongoing 12-band photometricopticalsurvey, observingthousands of squaredegrees of theNorthernHemispherefromthededicated JAST/T80 telescope at the Observatorio AstrofĂ­sico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mountedon a telescopewith a diameter of 83 cm, and isequippedwith a uniquesystem of filtersspanningtheentireopticalrange (3500–10 000 Å). Thisfiltersystemis a combination of broad-, medium-, and narrow-band filters, optimallydesigned to extracttherest-framespectralfeatures (the 3700–4000 Å Balmer break region, HÎŽ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizingstellartypes and delivering a low-resolutionphotospectrumforeach pixel of theobservedsky. With a typicaldepth of AB ∌21.25 mag per band, thisfilter set thusallowsforanunbiased and accuratecharacterization of thestellarpopulation in our Galaxy, itprovidesanunprecedented 2D photospectralinformationforall resolved galaxies in the local Universe, as well as accuratephoto-z estimates (at the ή z/(1 + z)∌0.005–0.03 precisionlevel) formoderatelybright (up to r ∌ 20 mag) extragalacticsources. Whilesomenarrow-band filters are designedforthestudy of particular emissionfeatures ([O II]/λ3727, Hα/λ6563) up to z < 0.017, theyalsoprovidewell-definedwindowsfortheanalysis of otheremissionlines at higherredshifts. As a result, J-PLUS has thepotential to contribute to a widerange of fields in Astrophysics, both in thenearbyUniverse (MilkyWaystructure, globular clusters, 2D IFU-likestudies, stellarpopulations of nearby and moderate-redshiftgalaxies, clusters of galaxies) and at highredshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellarobjects, etc.). Withthispaper, wereleasethefirst∌1000 deg2 of J-PLUS data, containingabout 4.3 millionstars and 3.0 milliongalaxies at r <  21mag. With a goal of 8500 deg2 forthe total J-PLUS footprint, thesenumbers are expected to rise to about 35 millionstars and 24 milliongalaxiesbytheend of thesurvey.Funding for the J-PLUS Project has been provided by the Governments of Spain and AragĂłn through the Fondo de Inversiones de Teruel, the Spanish Ministry of Economy and Competitiveness (MINECO; under grants AYA2017-86274-P, AYA2016-77846-P, AYA2016-77237-C3-1-P, AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, AGAUR grant SGR-661/2017, and ICTS-2009-14), and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685

    Does nutrition play a role in the prevention and management of sarcopenia?

    Full text link

    Intoxicação por monofluoroacetato em animais

    Full text link

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    • 

    corecore