7,098 research outputs found

    The impact of neutrino masses on the determination of dark energy properties

    Full text link
    Recently, the Heidelberg-Moscow double beta decay experiment has claimed a detection for a neutrino mass with high significance. Here we consider the impact of this measurement on the determination of the dark energy equation of state. By combining the Heidelberg-Moscow result with the WMAP 3-years data and other cosmological datasets we constrain the equation of state to -1.67< w <-1.05 at 95% c.l., ruling out a cosmological constant at more than 95% c.l.. Interestingly enough, coupled neutrino-dark energy models may be consistent with such equation of state. While future data are certainly needed for a confirmation of the controversial Heildelberg-Moscow claim, our result shows that future laboratory searches for neutrino masses may play a crucial role in the determination of the dark energy properties.Comment: 4 pages, 2 figure

    Constraining Quintessence with the New CMB Data

    Get PDF
    The CMB data recently released by BOOMERANG and MAXIMA suggest that the anisotropy spectrum has a third peak in the range 800<l_3<900. A combination of this result with constraints from large-scale structure permit us to differentiate between different quintessence models. In particular, we find that inverse power law models with power \alpha >1 are disfavoured. Models with more than 5% quintessence before last scattering require a spectral index greater than 1. These constraints are compared with supernovae observations. We also show that the CMB alone now provides strong evidence for an accelerating universe.Comment: 5 pages, 5 figures, replaced with version which appears in journal. Discussion on supernovae bounds and references adde

    Massive neutrinos and dark energy

    Full text link
    We consider the impact of the Heidelberg-Moscow claim for a detection of neutrino mass on the determination of the dark energy equation of state. By combining the Heidelberg-Moscow result with the WMAP 3-years data and other cosmological datasets we constrain the equation of state to -1.67< w <-1.05 at 95% c.l., While future data are certainly needed for a confirmation of the controversial Heildelberg-Moscow claim, our result shows that future laboratory searches for neutrino masses may play a crucial role in the determination of the dark energy properties.Comment: 3 pages, 1 figure, Talk given by Paolo Serra at the Neutrino Oscillation Workshop NOW2006, Otranto, Italy, September 9-16 200

    Observational constraints on an interacting dark energy model

    Get PDF
    We use observations of cosmic microwave background anisotropies, supernova luminosities and the baryon acoustic oscillation signal in the galaxy distribution to constrain the cosmological parameters in a simple interacting dark energy model with a time-varying equation of state. Using a Monte Carlo Markov Chain technique we determine the posterior likelihoods. Constraints from the individual data sets are weak, but the combination of the three data sets confines the interaction constant Γ\Gamma to be less than 23% of the expansion rate of the Universe H0H_0; at 95% CL −0.23<Γ/H0<+0.15-0.23 < \Gamma/H_0 < +0.15. The CMB acoustic peaks can be well fitted even if the interaction rate is much larger, but this requires a larger or smaller (depending on the sign of interaction) matter density today than in the non-interacting model. Due to this degeneracy between the matter density and the interaction rate, the only observable effect on the CMB is a larger or smaller integrated Sachs-Wolfe (ISW) effect. While SN or BAO data alone do not set any direct constraints on the interaction, they exclude the models with very large matter density, and hence indirectly constrain the interaction rate when jointly analysed with the CMB data. To enable the analysis described in this paper, we present in a companion paper [arXiv:0907.4981] a new systematic analysis of the early radiation era solution to find the adiabatic initial conditions for the Boltzmann integration.Comment: 16 pages, 10 figures. V2: Improved typography (2-column format); References and a motivation of CPL parametrization added; Accepted by MNRA

    The latitude dependence of the rotation measures of NVSS sources

    Full text link
    In this Letter I use the variation of the spread in rotation measure (RM) with Galactic latitude to separate the Galactic from the extragalactic contributions to RM. This is possible since the latter does not depend on Galactic latitude. As input data I use RMs from the catalogue by Taylor, Stil, and Sunstrum, supplemented with published values for the spread in RM (`sigmaRM') in specific regions on the sky. I test 4 models of the free electron column density (which I will abbreviate to `DMinf') of the Milky Way, and the best model builds up DMinf on a characteristic scale of a few kpc from the Sun. sigmaRM correlates well with DMinf. The measured sigmaRM can be modelled as a Galactic contribution, consisting of a term sigmaRM,MW that is amplified at smaller Galactic latitudes as 1/sin|b|, in a similar way to DMinf, and an extragalactic contribution, sigmaRM,EG, that is independent of latitude. This model is sensitive to the relative magnitudes of sigmaRM,MW and sigmaRM,EG, and the best fit is produced by sigmaRM,MW approx. 8 rad/m^2 and sigmaRM,EG approx. 6 rad/m^2. The 4 published values for sigmaRM as a function of latitude suggest an even larger sigmaRM,MW contribution and a smaller sigmaRM,EG. This result from the NVSS RMs and published sigmaRM shows that the Galactic contribution dominates structure in RM on scales between about 1degr -- 10degr on the sky. I work out which factors contribute to the variation of sigmaRM with Galactic latitude, and show that the sigmaRM,EG I derived is an upper limit. Furthermore, to explain the modelled sigmaRM,MW requires that structure in has a 1-sigma spread <~ 0.4 microG.Comment: 6 pages, 3 figures, 1 table. Published in MNRAS Letters; the definitive version is available at wileyonlinelibrary.com, http://onlinelibrary.wiley.com/doi/10.1111/j.1745-3933.2010.00957.x/pd

    A Possible Stellar Metallic Enhancement in Post-T Tauri Stars by a Planetesimal Bombardment

    Full text link
    The photospheres of stars hosting planets have larger metallicity than stars lacking planets. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30Myr. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planet's eccentricity (epe_p) and time scale of migration (Ï„\tau) on the rate of infalling planetesimals. For very fast migrations (Ï„=102\tau=10^2yr and Ï„=103\tau=10^3yr) there is no capture in mean motion resonances, independently of the value of epe_p. Then, due to the planet's migration the planetesimals suffer close approaches with the planet and more than 80% of them are ejected from the system. For slow migrations (Ï„=105\tau=10^5yr and Ï„=106\tau=10^6yr) the percentage of collisions with the planet decrease with the increase of the planet's eccentricity. For ep=0e_p=0 and ep=0.1e_p=0.1 most of the planetesimals were captured in the 2:1 resonance and more than 65% of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 MJupiterM_{\rm Jupiter} planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiters exoplanets metallicities.Comment: Accepted for publication by Monthly Notices of the Royal Astronomical Societ

    Early massive clusters and the bouncing coupled dark energy

    Full text link
    The abundance of the most massive objects in the Universe at different epochs is a very sensitive probe of the cosmic background evolution and of the growth history of density perturbations, and could provide a powerful tool to distinguish between a cosmological constant and a dynamical dark energy field. In particular, the recent detection of very massive clusters of galaxies at high redshifts has attracted significant interest as a possible indication of a failure of the standard LCDM model. Several attempts have been made in order to explain such detections in the context of non-Gaussian scenarios or interacting dark energy models, showing that both these alternative cosmologies predict an enhanced number density of massive clusters at high redshifts, possibly alleviating the tension. However, all the models proposed so far also overpredict the abundance of massive clusters at the present epoch, and are therefore in contrast with observational bounds on the low-redshift halo mass function. In this paper we present for the first time a new class of interacting dark energy models that simultaneously account for an enhanced number density of massive clusters at high redshifts and for both the standard cluster abundance at the present time and the standard power spectrum normalization at CMB. The key feature of this new class of models is the "bounce" of the dark energy scalar field on the cosmological constant barrier at relatively recent epochs. We present the background and linear perturbations evolution of the model, showing that the standard amplitude of density perturbations is recovered both at CMB and at the present time, and we demonstrate by means of large N-body simulations that our scenario predicts an enhanced number of massive clusters at high redshifts without affecting the present halo abundance. (Abridged)Comment: 11 pages, 6 figures, 2 tables. Minor changes, references added. Accepted for publication in MNRA
    • …
    corecore