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Constraining quintessence with the new CMB data
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Abstract

The CMB data recently released by BOOMERANG and MAXIMA suggest that the anisotropy spectrum has a third peak
in the range 800 < l3 < 900. A combination of this result with constraints from large-scale structure permit us to differentiate
between different quintessence models. In particular, we find that inverse power law models with power α > 1 are disfavoured.
Models with more than 5% quintessence before last scattering require a spectral index greater than 1. These constraints are
compared with supernovae observations. We also show that the CMB alone now provides strong evidence for an accelerating
universe.

 2002 Elsevier Science B.V.

PACS: 98.80.-k; 98.80.Es; 98.80.Cq; 95.35.+d

Two independent observations suggest that a signif-
icant part of the energy density is homogeneously dis-
tributed over the observable Universe: the accelerated
expansion [1,2] and the mismatch between the amount
of matter in structures and the critical energy den-
sity. An accelerated expansion implies that the energy
density of the Universe is dominated by a component
with negative pressure. The standard negative pres-
sure term, Einstein’s cosmological constant, is plagued
by enormous fine-tuning problems [3,4], making it
seem extremely unnatural. An alternative suggestion
for explaining homogeneously-distributed dark energy
is quintessence—a scalar field with a slowly-decaying
potential [5,6]. Quintessence can lead to a Universe
which is accelerating today, without the severe fine-
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tuning of parameters, or of initial conditions [5–7]
(a property referred to as tracking [8]). The field has
a time-varying equation of state, becoming dominant
only recently thus allowing processes like nucleosyn-
thesis and structure formation to occur unimpeded
[6,9]. For a review of quintessence and its properties,
see [10] or [11]. There are several different ways of
implementing quintessence, generally involving dif-
ferent functional forms for the scalar field action [5,6,
12–14], or couplings to matter [15–17]. These differ-
ent models have common properties, such as tracking
and a negative equation of state today, but also differ
in their evolution with time. This non-genericness of
quintessence makes it difficult to devise observational
tests which could detect it and even more difficult to
rule it out. Likelihood analysis involving several dif-
ferent types of observation can give good constraints
on a given model, but since there is no theoretically-
preferred potential we find it more instructive to look
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for generic, model-independent information. We seek
observations sensitive to the amount of dark energy
at different epochs in the history of the Universe—
in this way the differing time evolution of different
quintessence models and a cosmological constant can
be compared.

In a recent paper a convenient model-independent
framework for quantifying the sensitivity of the Cos-
mic Microwave Background (CMB) to quintessence
was proposed [18] (see also [19]). It was demonstrated
that the location of the CMB peaks depend on three
dark-energy related quantities: the amounts of dark en-
ergy today Ω0

φ and at last scattering �Ω ls
φ as well as

its time-averaged equation of state w̄0. In this way, it
could be possible to extract information on the amount
of quintessence present before last scattering: if �Ω ls

φ

turns out to be non-zero, we would have strong evi-
dence for non-cosmological constant dark energy. This
procedure can also be used to differentiate between
different quintessence models. It was emphasized that
the acoustic scale lA (which is defined below) is a con-
venient single quantity for characterizing aspects of
the CMB, in the way that σ8 (the rms mass fluctuation
on scales of 8h−1 Mpc) is used for cluster abundance
constraints.

Recent measurements of the CMB [20,21] show
three peaks as distinct features, seeming to confirm be-
yond any reasonable doubt the inflationary picture of
structure formation from predominantly adiabatic ini-
tial conditions. In this Letter we analyse the new data
and in particular the consequences of the measured
peak locations for quintessence. We find that when
combined with constraints from large-scale structure
(LSS), models where the scalar field has an inverse-
power potential are disfavoured, as are models with
more than 5% quintessence before last scattering un-
less the spectral index n > 1. We also show that the
new CMB data provides strong evidence for an accel-
erating universe, independent of supernovae (SNe Ia)
data, to which we return at the end of this note.

In this work, we have assumed a flat universe, with
Ωbh

2 = 0.022 ± 0.003 and n = 1 unless otherwise
stated.

The CMB peaks arise from acoustic oscillations of
the primeval plasma just before the universe becomes
translucent. The angular momentum scale of the oscil-
lations is set by the acoustic scale lA which for a flat

universe is given by

(1)lA = π
τ0 − τls

c̄sτls
,

where τ0 and τls are the conformal time today and at
last scattering and c̄s is the average sound speed before
decoupling. The value of lA can be calculated simply,
and for flat universes is given by [18]

(2)

lA = πc̄−1
s

[
F(Ω0
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with

(3)
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Here Ω0
r ,Ω

0
φ are today’s radiation and quintessence

components, als is the scale factor at last scattering
(if a0 = 1), c̄s , �Ω ls

φ are the average sound speed and
quintessence components before last scattering and w̄0
is the Ωφ-weighted equation of state of the Universe
(w(τ) = p(τ)/ρ(τ ))

(4)w̄0 =
τ0∫

0

Ωφ(τ)w(τ)dτ ×
( τ0∫

0

Ωφ(τ)dτ

)−1

.

The location of the peaks is slightly shifted by
driving effects and we compensate for this by parame-
terising the location of the mth peak lm as in [22,23]

(5)lm ≡ lA(m− ϕm).

The reason for this parameterization is that the phase
shifts ϕm of the peaks are determined predominantly
by pre-recombination physics, and are independent
of the geometry of the Universe. The values of the
phase shifts are typically in the range 0.1–0.5 and
depend on the cosmological parameters Ωbh

2, n, �Ω ls
φ

and the ratio of radiation to matter at last scattering
r� = ρr(z�)/ρm(z�). It is not in general possible to de-
rive analytically a relation between the cosmological
parameters and the peak shifts, but fitting formulae,
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describing their dependence on these parameters were
given in [23].

It was shown [23] that ϕ3 is relatively insensitive
to cosmological parameters, and that by assuming
the constant value ϕ3 = 0.341 we can estimate lA to
within one percent if the location of the third peak l3
is measured, via the relation

(6)lA = l3

3 − ϕ3
.

The measurement of a third peak in the CMB spectrum
by BOOMERANG [20] now allows us to extract
the acoustic scale lA and use this as a constraint
on cosmological models. The BOOMERANG team
recently performed a model-independent analysis of
their data [24], and found the third peak to lie in the
region

(7)l3 = 845+12
−25,

from which we calculate the value

(8)lA = 316 ± 8.

If we instead chose the more conservative assumption
that 800 < l3 < 900, we would get the bound

(9)lA = 319 ± 23.

We will perform our analysis using both of these
ranges for the location of the third peak. The two
ranges are displayed, along with the BOOMERANG
data, in Fig. 1. Independently of [24] we have per-
formed cubic spline fittings to the data presented
in [20], as well as to the combined multiple-experiment
data given in [25]. We allowed the data to vary ac-
cording to the Gaussian errors given. We find for the
BOOMERANG and combined data respectively:

(10)l1 = 221 ± 14, 222 ± 14,
(11)l2 = 524 ± 35, 539 ± 21,
(12)l3 = 850 ± 28, 851 ± 31.

We applied our CMB-derived lA constraints to two
types of quintessence model: an inverse power law
(IPL) potential [6], given by

(13)V (φ) = V0φ
−α,

and a ‘leaping kinetic term’ (LKT) model [14], where
the Lagrangian is given by

(14)L(φ) = 1
2
(∂µφ)

2k2(φ)+M4�P exp(−φ/M�P ),

Fig. 1. The CMB anisotropy power spectrum as measured by
BOOMERANG [20]. The inner vertical lines show the region
820 < l3 < 857 as calculated by the BOOMERANG team [24], and
the outer lines our more conservative region 800 < l3 < 900.

and kinetic term

(15)k(φ) = kmin + tanh
[
(φ − φ1)/M�P

]+ 1,

with M−2
�P = 8πG. The constants V0 and φ1 determine

the value of Ωφ today in each case. The IPL model
has equation of state today given by w = −2/(α + 2)
and in the LKT model the constant kmin can be
tuned to give specific values of �Ω ls

φ . In addition,
one could multiply the argument of the tanh() in
Eq. (15) by a factor in order to steepen the increase
in the kinetic term. The equation of state today, w0 ≡
w(today), depends strongly on the precise shape of
k(φ). This is relevant for supernovae observations, and
we emphasize that, in general, w0 	= w̄0. For a steep
increase in k(φ), one can have w0 very close to −1
(see also Fig. 4). Other models of quintessence share
the effective time dependence of w [26,27].

We also applied the constraints to a cosmological
constant (Ω0

φ ≡ ΩΛ) universe (i.e., IPL quintessence
with α = 0) for comparison.

In Figs. 2, 3 we show for our chosen dark en-
ergy models the range of Ωφ and h allowed by
Eqs. (8) and (9). These ranges are similar for the cos-
mological constant, LKT (also for �Ω ls

φ = 0.2) and
IPL for small α whereas IPL with α = 2 would be
pushed to small values of h. The comparatively low
values of h inferred from the BOOMERANG data
can be combined with information from LSS forma-
tion. The growth of density fluctuations ceases when
quintessence starts to dominate. In this way LSS can
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Fig. 2. BOOMERANG (solid lines give conservative bound, dotted lines more strict bound) and LSS (dashed lines) constraints in ΩΛ–h plane
(left) and Ωφ–h plane for LKT quintessence with Ω ls

φ = 0.05 (right). The dotted box indicates the 1σ maximum likelihood ranges obtained by
the BOOMERANG data analysis team with flatness and LSS priors.

Fig. 3. Constraints in the Ωφ–h plane for IPL quintessence, from BOOMERANG and LSS, α = 1 (left) and α = 2 (right).

serve as a probe of quintessence at intermediate red-
shifts. Cluster abundance constraints for quintessence
models with constant equation of state yield [28]

(16)σ8Ω
γ
m = 0.5 − 0.1

[
(n − 1)+ (h− 0.65)

]
,

where γ depends slightly on w, and typically γ ∼ 0.6.
In [28], the uncertainty for Eq. (16) was estimated as
20% at 2σ , and this is the constraint shown in the plots.
We have chosen to shade the 2σ LSS and conservative
lA concordance region in the Ω0

φ–h plane, but not
to impose any bounds on these parameters. Recently,
however, the HST has measured h = 72 ± 8 [29], and
the 2dF survey Ωmh = 0.20 ± 0.03 [30].

The current CMB and LSS data are consistent with
a cosmological constant (Fig. 2). The LKT model with
5% quintessence at last scattering is marginally com-
patible for small h. If the amount of quintessence at
last scattering is increased beyond 5%, the lA bounds
do not change significantly. Compatibility with LSS

data would require, however, even higher h-values,
at odds with the BOOMERANG data. In contrast to
the CMB measurements, the determination of σ8 by
cluster abundances involves systematic uncertainties
that are difficult to quantify. Furthermore, the theoreti-
cal expectation for σ8 depends strongly on the spec-
tral index n. Some inflationary models indeed con-
nect the smallness of primordial density fluctuations to
n = 1.1–1.15 [31]. Increasing n increases the amount
of dark energy allowed during structure formation. For
n = 1.1, the LKT model with 10% quintessence at last
scattering becomes feasible.

The IPL model (Fig. 3) with α = 2 is disfavoured,
with higher values of α even worse, but α = 1
survives.

Of course IPL models with α < 1 provide a better
fit to the data, however for α → 0 IPL approaches the
cosmological constant and the problem of naturalness
becomes more and more severe (with possible excep-
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tions [32]). Similar conclusions on the IPL model have
been derived from the old BOOMERANG data [33],
but only for fixed h = 0.65. We see from our figures
that the results can be very sensitive to changes in h.

Other constraints on dark energy come from SN Ia
analysis [34–39]. A cosmological constant is restricted
to ΩΛ ∈ [0.5,0.9] at 2σ confidence level [1,40]. For
quintessence, the bound on ΩΛ can easily be trans-
lated into one on w0 and Ω0

φ . This is due to a degen-
eracy of the luminosity distance dl(z) in w0 and Ω0

φ ,
and the fact that most of the current SNe Ia data is in
the redshift range z ∈ [0.35,0.7]. In this range, an ap-
proximate linear relation dl(z)H0/(1 + z) = g0(z) +
xg1(z) holds, depending only on the combination x ≡
w0[Ω0

φ]1.4. Put another way, any Quintessence model
with w0[Ω0

φ]1.4 = −Ω1.4
Λ is, by current SN Ia data, in-

distinguishable from the corresponding ΛCDM uni-
verse with ΩΛ (see also Fig. 4). From the bounds
ΩΛ ∈ [0.5,0.9], we get

(17)−0.86
[
Ω0

φ

]−1.4
<w0 < −0.38

[
Ω0

φ

]−1.4
.

For the IPL model, this can be translated into Ω0
φ >

0.3(α + 2)5/7, i.e., assuming that Ω0
φ < 0.8, we

have α < 1.9 (see also [37]). This is comparable to
our CMB and LSS constraint. On the other hand,
LKT models can be consistent with SNe Ia and
nevertheless differ substantially from cosmological
constant scenarios for the CMB and LSS (see Fig. 4).
For these models, the CMB+LSS and the SNe Ia
constraints are not directly related and cannot easily
be compared.

A flat universe is accelerating today if the dark
energy component and its equation of state satisfy

(18)Ω0
φw0 < −1

3
.

Assuming that there is no significant dark energy com-
ponent at last scattering, we can combine our con-
straints on lA with Eq. (2). Fig. 5 shows that provided
h > 0.6, the CMB now gives strong evidence for an ac-
celerating universe, independently of supernovae data.

In this Letter we have applied the latest CMB
data to different models of quintessence, via the easy-
to-extract acoustic scale lA and combined it with
constraints from LSS formation. We have found that
inverse power law quintessence models are severely
constrained, as are models with more than 5% quin-

Fig. 4. The luminosity distance dl(z) (plotted as dl(z)H0/2(1 + z))
and Ω(z) for a ΛCDM and a LKT universe with Ω0

Λ = 0.6 and
Ω0

φ = 0.7, respectively. The equation of state wφ(z) of the LKT
quintessence is also given. For low redshift, the equation of state
is close to −1, w0 = −0.8. For w0[Ω0

φ ]1.4 = Ω0
Λ , the luminosity

distance of both LKT and ΛCDM fall on top of each other in the
redshift region relevant for current SN Ia analysis (two upper most
curves). Despite the similar late time behaviour, the LKT model has
Ωφ ≈ 0.1 from very early times on, whereas in the cosmological
constant model, dark energy plays a role only recently.

Fig. 5. Lines of constant lA in the Ω0
φ–w̄0 plane, for h = 0.6. All

universes to the left of the dotted line are accelerating. For larger
values of h, the lA lines are shifted north-west.

tessence at last scattering and spectral index n = 1.
In both cases the models can be compatible with
CMB or LSS when taken alone, but not together.
In order to use the CMB to detect quintessence,
via a non-zero density at last scattering, a more
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accurate measurement of the location of the first CMB
peak, and hence the �Ω ls

φ -dependent peak shift ϕ1, is
required.
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