123 research outputs found

    Ctf4 Is a Hub in the Eukaryotic Replisome that Links Multiple CIP-Box Proteins to the CMG Helicase

    Get PDF
    Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation.We gratefully acknowledge the support of the Medical Research Council (core grant MC_UU_12016/13), the Wellcome Trust (references 097945/B/11/Z for flow cytometry, 102943/Z/13/Z for award to K.L., and 104641/Z/14/Z for award to L.P.), and the Gates Cambridge PhD programme (A.C.S.) for funding our work

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Platelet Activating Factor Blocks Interkinetic Nuclear Migration in Retinal Progenitors through an Arrest of the Cell Cycle at the S/G2 Transition

    Get PDF
    Nuclear migration is regulated by the LIS1 protein, which is the regulatory subunit of platelet activating factor (PAF) acetyl-hydrolase, an enzyme complex that inactivates the lipid mediator PAF. Among other functions, PAF modulates cell proliferation, but its effects upon mechanisms of the cell cycle are unknown. Here we show that PAF inhibited interkinetic nuclear migration (IKNM) in retinal proliferating progenitors. The lipid did not, however, affect the velocity of nuclear migration in cells that escaped IKNM blockade. The effect depended on the PAF receptor, Erk and p38 pathways and Chk1. PAF induced no cell death, nor a reduction in nucleotide incorporation, which rules out an intra-S checkpoint. Notwithstanding, the expected increase in cyclin B1 content during G2-phase was prevented in the proliferating cells. We conclude that PAF blocks interkinetic nuclear migration in retinal progenitor cells through an unusual arrest of the cell cycle at the transition from S to G2 phases. These data suggest the operation, in the developing retina, of a checkpoint that monitors the transition from S to G2 phases of the cell cycle

    Macrophage signaling in HIV-1 infection

    Get PDF
    The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection

    Cholera- and Anthrax-Like Toxins Are among Several New ADP-Ribosyltransferases

    Get PDF
    Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences – including a primary sequence pattern – to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data – and we need high-throughput validation – our approach provides insight into the newest toxin ADP-ribosyltransferases
    corecore