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SUMMARY

Replisome assembly at eukaryotic replication forks
connects the DNA helicase to DNA polymerases
and many other factors. The helicase binds the lead-
ing-strand polymerase directly, but is connected to
the Pol a lagging-strand polymerase by the trimeric
adaptor Ctf4. Here, we identify new Ctf4 partners
in addition to Pol a and helicase, all of which contain
a ‘‘Ctf4-interacting-peptide’’ or CIP-box. Crystallo-
graphic analysis classifiesCIP-boxes into two related
groups that target different sites onCtf4.Mutations in
the CIP-boxmotifs of the Dna2 nuclease or the rDNA-
associated protein Tof2 do not perturb DNA synthe-
sis genome-wide, but instead lead to a dramatic
shortening of chromosome 12 that contains the large
array of rDNA repeats. Our data reveal unexpected
complexity of Ctf4 function, as a hub that connects
multiple accessory factors to the replisome. Most
strikingly, Ctf4-dependent recruitment of CIP-box
proteins couples other processes to DNA synthesis,
including rDNA copy-number regulation.

INTRODUCTION

Chromosome replication is one of the most complex processes

in cell biology and is mediated by an extensive set of proteins,

particularly in eukaryotes where DNA synthesis is coupled to

a variety of other processes, such as chromatin regeneration,

checkpoint signaling, and the establishment of cohesion be-

tween sister chromatids. Of the many factors that mediate chro-

mosome duplication, a core assembles around the essential

DNA helicase at replication forks to form a dynamic assembly

called the replisome (Yao and O’Donnell, 2010). The reasons

for replisome assembly are understood poorly in eukaryotes,

where replisome structure is ill defined, multiple components

are still of unknown function, and in vitro reconstitution of chro-

mosome duplication is still at an early stage (Yeeles et al., 2015).
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By comparison with eukaryotes and archaea, the structure

and function of the E. coli replisome are very well characterized.

A defining feature of the bacterial replisome is that the clamp

loader connects the DnaB helicase to three copies of the DNA

polymerase III complex that jointly synthesize the leading

and lagging strands. The physical link between helicase and

polymerases couples DNA unwinding to the rate of DNA synthe-

sis, thus minimizing the exposure of single-strand DNA and

also increasing the overall speed of fork progression (Kim

et al., 1996). Although the same principles should apply to the

eukaryotic replisome, the underlying molecular mechanisms

are very different, as the eubacterial and eukaryotic machineries

evolved separately (Georgescu et al., 2015), and the eukaryotic

replisome contains many factors not found in its bacterial

counterpart.

Three different DNA polymerases cooperate in the synthesis

of the leading and lagging strands at eukaryotic forks (Kunkel

and Burgers, 2014). Each new DNA molecule is initiated by

Pol a, which synthesizes short RNA-DNA primers that are then

extended by Pol ε and Pol d to produce the leading and lagging

strands. Both Pol ε and Pol a are connected to the CMG DNA

helicase (CMG = Cdc45-MCM-GINS) as part of the eukaryotic

replisome (Gambus et al., 2009; Langston et al., 2014; Sengupta

et al., 2013; Tanaka et al., 2009). Whereas direct binding of Pol ε

to CMG has been shown in vitro to couple DNA unwinding to the

rate of leading-strand synthesis and is important for the rate

of fork progression (Georgescu et al., 2014), Pol a is tethered

indirectly to CMG (Gambus et al., 2009; Tanaka et al., 2009) by

a factor known in budding yeast as Ctf4 (chromosome transmis-

sion fidelity = Ctf, referring to the screen in which the CTF4 gene

was first identified).

Ctf4 forms a homotrimer that has the potential to connect the

CMG helicase to one or two Pol a complexes, via the a-helical

bundle at the carboxyl terminus of each Ctf4 protomer, which

binds to a short conserved motif in the GINS component of

CMG and the Pol1 catalytic subunit of Pol a (Simon et al.,

2014). These observations formed the basis for a model of

the eukaryotic replisome, in which the CMG helicase is con-

nected directly to the leading strand polymerase ε and indi-

rectly by Ctf4 to two copies of lagging strand polymerase a,

in order to promote efficient DNA synthesis. Here, we show
ugust 4, 2016 ª 2016 The Authors. Published by Elsevier Inc. 385
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Figure 1. Displacing Pol a from the Replisome Does Not Reproduce

All the Phenotypes of Deleting the CTF4 Gene

(A) pol1-4A is not synthetic lethal with mrc1D. The indicated diploids were

sporulated and the tetrads were dissected. The genotypes were determined

by replica plating after 2 days of growth at 30�C.
(B) The pol1-4A allele does not cause sensitivity to hydroxyurea treatment, in

contrast to ctf4D.

See also Figure S1 and Table S1.
that Ctf4 is not simply an adaptor that bridges helicase and

Pol a, but instead is a nexus within the eukaryotic replisome

that links multiple proteins to CMG. Our findings highlight the

functional complexity of the eukaryotic replisome, in which

the Ctf4 hub couples the helicase to a wide range of factors

that play diverse roles in the complex process of chromosome

duplication.
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RESULTS

Pol a Cannot Be the Only Factor that Is Linked to the
CMG Helicase by the Ctf4 C-Terminal Domain
We previously showed that mutations in the Ctf4-interacting

motif of Pol1 displace Pol a from the replisome in budding yeast

(Simon et al., 2014), equivalent to cells that lack Ctf4 completely

(Gambus et al., 2009), suggesting that Ctf4 functions primarily

as an adaptor between Pol a and the CMG helicase. However,

pol1-4A cells lack many of the phenotypes of ctf4D cells, such

as synthetic lethality with deletion of the genes encoding the

checkpoint mediator Mrc1 (Figure 1A; Table 1), or the clamp

loader Ctf18 (Figure S1), or sensitivity to dNTP depletion by

hydroxyurea treatment (Figure 1B). These findings raised the

possibility that Ctf4 might also recruit other factors to the CMG

helicase, in addition to Pol a.

To explore this possibility further, we disrupted the binding site

for the Ctf4-binding motifs of Pol1 and Sld5 by glutamate muta-

tion of four exposed hydrophobic residues, L867, A871, A897,

and I901, in the a-helical domain of Ctf4 (Figure 2A). As pre-

dicted, the mutated Ctf4 proteins did not interact with the amino

terminus of Pol1 in the yeast two-hybrid assay (Figures 2B and

S2A), but still associated with wild-type Ctf4 (Figure 2B). More-

over, the Ctf4-4E protein was able to form a trimer in vitro (Fig-

ure 2C), though neither Ctf4-4E nor Ctf4-I901E could bind in a

fluorescence anisotropy assay to an isolated peptide containing

the Sld5 CIP-box (Figure S2B). Upon introduction of the ctf4-4E

or ctf4-I901E alleles into the native CTF4 locus in yeast cells, the

mutated proteins were expressed to a similar level as wild-type

Ctf4 protein, but were unable to interact with the CMG helicase

as part of the replisome, leading to greatly diminished replisome

association of Pol a (Figures 2D and S2C–S2F), equivalent to

cells lacking Ctf4 (Gambus et al., 2009). Crucially, both ctf4-4E

and ctf4-I901E were synthetic lethal with mrc1D (Figures 2E

and S2G) and ctf18D (Figures S2H and S2I). Taken together,

these findings suggested that the C-terminal domain of Ctf4

might also have other client proteins in addition to Pol a.

The ‘‘CIP-Box’’ Motif of the Dna2 Nuclease Is Important
for rDNA Maintenance
To identify novel binding partners of Ctf4, we used a yeast two-

hybrid screen against residues 461–927 (Ctf4CTD), which bridge

helicase to polymerase and mediate trimerisation (Simon et al.,

2014). In addition to multiple fragments from the amino terminus

of Pol1 (Gambus et al., 2009), the central b-propeller domain of

Ctf4 that mediates trimer formation (Simon et al., 2014), and

the Psf2 subunit of GINS, we also identified three new partners

of Ctf4 (Figure S3A).

The first of these was the multi-functional nuclease/helicase

Dna2, which plays a role in the processing of Okazaki fragments

during lagging strand synthesis, and in DNA-end resection for

homologous recombination (Cejka, 2015; Kao and Bambara,

2003). We confirmed that Dna2 co-purified with Ctf4, from ex-

tracts of S phase cells in which Ctf4 forms part of the replisome

(Figure 3A). Inspection of the amino acid sequence of Dna2 re-

vealed a single peptide in its N-terminal region that closely

resembled theCtf4-interactingmotif of Sld5 andPol1 (Figure 3B).

This sequence is located within the minimal fragment of Dna2



Table 1. Data Collection and Refinement Statistics for

Crystallography Experiments

Dna2 Soak Tof2 Soak

Data Collectiona

Wavelength (Å) 0.91915 0.97949

Resolution (Å) 48.98–3.09

(3.23–3.09)

48.99–3.30

(3.50–3.30)

Space group P 2 21 21 P 2 21 21

Unit cell (Å) 88.68, 99.55,

and 218.37

88.58, 99.55,

and 218.65

Total reflections 240,747 (28,219) 137,485 (21,087)

Unique reflections 36,111 (4,264) 29,749 (4,686)

Multiplicity 6.7 (6.6) 4.6 (4.5)

Completeness (%) 99.7 (97.7) 99.3 (98.5)

Mean I/sigma(I) 9.8 (1.7) 8.2 (2.1)

Wilson B-factor 69.49 80.76

R-merge 0.181 (1.143) 0.161 (0.773)

R-meas 0.196 (1.241) 0.182 (0.872)

CC1/2 0.994 (0.635) 0.991 (0.717)

Refinement

Reflections used in refinement 36,057 29,704

Reflections used for R-free 1,816 1,471

R-work 0.1813 0.1789

R-free 0.2275 0.2240

Number of non-hydrogen

atoms

9,598 9,650

Macromolecules 9,527 9,599

Protein residues 1,180 1,185

RMS (bonds) 0.002 0.002

RMS (angles) 0.51 0.46

Ramachandran favored (%) 95 95

Ramachandran allowed (%) 4.4 4.2

Ramachandran outliers (%) 0.26 0.43

Rotamer outliers (%) 0.095 0.19

Clashscore 3.18 3.83

Average B-factor 70.91 79.61

Macromolecules 71.05 79.75

Solvent 51.79 53.38
aStatistics for the highest-resolution shell are shown in parentheses.
that interacted with Ctf4 in the two-hybrid screen, and associ-

ates directly with Ctf4 in vitro when fused to glutathione S-trans-

ferase (GST), in a manner that is dependent upon residues

conserved with the equivalent motifs of Sld5 and Pol1 (Fig-

ure 3B). These findings indicated that Dna2, Sld5, and Pol1

each contain a ‘‘Ctf4-Interacting Peptide’’, henceforth referred

to as a CIP-box by analogy with the previously described

‘‘PCNA-Interacting Peptide’’ or PIP-box (Warbrick, 1998).

To test the importance of the CIP-box sequence for the inter-

action of Dna2 with Ctf4, we mutated conserved residues within

the motif (Figure 3C, Dna2-4A). These mutations blocked inter-

action with trimeric Ctf4, both in the context of full-length Dna2

and also in the minimal Ctf4-interacting fragment identified in
the two-hybrid screen (Figure 3C). We then used non-dissocia-

tive (native) mass spectrometry (Figure S3B) and fluorescence

anisotropy (Figure S3C) to show that an isolated peptide contain-

ing the Dna2 CIP-box was able to bind directly to Ctf4 in vitro.

Encouraged by these findings, we soaked the Dna2 peptide

into crystals of Ctf4 471–927, using the same approach that

we described previously (Simon et al., 2014), and found that

the Dna2 CIP-box sequence folded as a two-turn a helix

that bound to the helical domain of Ctf4 (Figure 3D), in a very

similar manner to the CIP-boxes of Sld5 and Pol1 (Figure 3E).

These data indicate that budding yeast Dna2, Sld5, and Pol1

are archetypes of a set of CIP-box proteins that all share a com-

mon mode of interaction with Ctf4.

To explore the functional significance of tethering Dna2 to

Ctf4, we introduced CIP-box mutations into the endogenous

DNA2 locus in yeast cells. The dna2-4A allele was viable, even

in the absence of the Mec1 checkpoint kinase (Figure 3F), indi-

cating that displacement of Dna2 from Ctf4 does not produce

significant defects in DNA synthesis. Interestingly, however,

pulse field gel electrophoresis indicated that chromosome 12

was dramatically smaller in dna2-4A cells (Figure 3G), whereas

other chromosomes were not affected. This suggests that teth-

ering of Dna2 to Ctf4 at replication forks is part of a replication-

coupled mechanism to maintain the large array of rDNA repeats

on chromosome 12.

Tof2 and Dpb2 Define a Second Class of CIP-Box
Proteins with a Distinct Binding Site in Ctf4
Multiple hits of twomore new partners of Ctf4 461–927 were also

identified in the screen, namely the Dpb2 subunit of Pol ε (Araki

et al., 1991) and the rDNA-associated protein Tof2 (Huang et al.,

2006; Park and Sternglanz, 1999). In both cases, inspection

of the minimal Ctf4-interacting fragment from the two-hybrid

screen identified a peptide with limited similarity to the CIP-

boxes of Dna2, Sld5, and Pol1 (Figure 4A), with predicted a-he-

lical character. Mutation of conserved residues in the putative

CIP-box of Dpb2, located within the amino-terminal domain of

Dpb2 that was previously shown to link Pol ε to the GINS compo-

nent of the CMG helicase (Sengupta et al., 2013), abrogated

interaction with Ctf4 without affecting the association of Dpb2

with GINS or the Pol2 catalytic subunit of Pol ε (Figure 4B). Simi-

larly, mutations in the predicted CIP-box of Tof2 also abolished

interaction with Ctf4 in the two-hybrid assay (Figure 4C). These

findings indicated that Dpb2 and Tof2 represent two additional

CIP-box proteins.

As Tof2 had not previously been shown to interact with com-

ponents of the chromosome replication machinery, we ex-

pressed a tagged form of Tof2 in budding yeast cells and found

that Tof2 co-purified with Ctf4 in both G1-phase and S phase

(Figure 4D). This is consistent with direct association of Tof2

with Ctf4, and we confirmed by native mass spectrometry and

pull-down assays that a peptide containing the Tof2 CIP-box

could indeed bind directly to Ctf4 in vitro (Figures S4A and

S4B). In addition, Tof2 co-purified with the CMG helicase during

S phase (Figure 4D), indicating that Tof2 can associate with Ctf4

in the context of the replisome.

To establish how the divergent Tof2 CIP-box binds to Ctf4,

we soaked the corresponding peptide into Ctf4CTD crystals.
Molecular Cell 63, 385–396, August 4, 2016 387
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Figure 2. Mutation of the C-Terminal Peptide Binding Domain of Ctf4 Produces Many of the Phenotypes of ctf4D Cells, Indicating that This

Domain has Other Partners in Addition to Pol a

(A) Illustration of the key residues in the helical domain of Ctf4 that bind to the Ctf4 interacting motifs of Sld5 and Pol1 and that are mutated in the ctf4-4E allele.

(B) The Ctf4-4E protein does not interact with the amino terminus of Pol1 in the yeast two-hybrid assay (AD and DBD correspond to activation and DNA-binding

domains of Gal4).

(C) Size exclusion chromatography with multi-angle light scattering (SEC-MALS) indicates that Ctf4-4E 471–927 is trimeric, like wild-type Ctf4 471–927.

(D) Cultures of ctf4-4E MCM4-9MYC (YFV13) andMCM4-9MYC control cells (YSS75) were synchronized in G1-phase at 30�C and then released into S phase for

20 min. The Mcm4-9MYC was isolated from cell extracts by immunoprecipitation and the associated proteins monitored by immunoblotting.

(E) ctf4-4E is synthetic lethal withmrc1D. The cells were processed as in Figure 1A, and the photos in the lower images were taken after 20 hr growth at 30�C (the

scale bars represent 50 mm).

See also Figure S2.
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Figure 3. Interaction of the Type I CIP-Box Protein Dna2 with Ctf4 Is Important for rDNA Maintenance

(A) GAL-DNA2-9MYC CTF4-TAP (YFV22) and GAL-DNA2-9MYC control cells (YFV21) were grown at 30�C in rich medium containing 2% galactose and then

treated as in Figure 2D. The Ctf4-TAP was isolated from cell extracts on magnetic beads coupled to IgG.

(B) The smallest fragment of Dna2 that interacted with Ctf4 461–927 in the two-hybrid screen (120–456 shown in red) contains a Ctf4-interacting peptide or

CIP-box, closely related to those of Sld5 and Pol1 (upper). When fused to GST, the Dna2 CIP-box sequence 207–223 pulled down Ctf4 471–927 in vitro,

dependent upon conserved residues (lower).

(C) Mutations in the CIP-box of Dna2 abolished the interaction of full-length Dna2 (1–1,522) or Dna2 120–456 to interact with Ctf4 461–927.

(D) When soaked into crystals of Ctf4 471–927, the Dna2 CIP-box binds to the helical region of Ctf4, as previously observed for the CIP-boxes of Pol1 and Sld5

(Simon et al., 2014). The Ctf4 protein is drawn as a ribbon, colored according to secondary structure (alpha helices in yellow and beta strands in cyan), and the

Dna2 CIP-box is shown as a thin purple tube (the residues visible in the structure are indicated).

(E) Superposition of Pol1, Sld5, and Dna2 CIP-boxes bound to Ctf4 471–927 shows a common mode of interaction with the helical domain of Ctf4CTD.

(F) dna2-4A is not synthetic lethal with mec1D. A diploid of the indicated genotype (YFV62) was sporulated and the tetrads dissected on YPD medium.

(G) Pulse field gel electrophoresis of chromosomal DNA from control cells (W303-1a) and dna2-4A (YFV17). The gel was stained with ethidium bromide (left) and

then transferred to nitrocellulose before hybridization with a probe to the rDNA (right).

See also Figure S3.
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Figure 4. Tof2 and Dpb2 Define a New Class of Type II CIP-Box Proteins that Bind to a Novel Binding Pocket on the Surface of Ctf4

(A) The smallest fragments of Dpb2 and Tof2 that interacted with Ctf4 461–927 in the two-hybrid screen (shown in red) were each found to contain a putative

CIP-box with limited homology to the type I CIP-boxes of Sld5, Dna2, and Pol1. These are termed type II CIP-boxes.

(B) Mutations in the type II CIP-box of Dpb2 blocked interaction in the two hybrid assay with Ctf4 461–927, without affecting interaction with the Psf1 subunit of

GINS or the Pol2 catalytic subunit of Pol ε.

(C) Similarly, mutations in the type II CIP-box of Tof2 blocked interaction with Ctf4 461–927.

(D) Cells expressing GAL-TOF2-ProteinA (YFV47) were grown as in Figure 3A, before isolation of Tof2-ProteinA on IgG beads. The indicated proteins were

monitored by immunoblotting.

(E) Soaking of the Tof2 CIP-box peptide into crystals of Ctf4 471–927 revealed a novel binding site on the surface of Ctf4. The side view of the Ctf4CTD structure

shows the Tof2 CIP-box peptide, in yellow (the residues visible in the structure are indicated), bound to one Ctf4 protomer, colored in lighter green to facilitate

identification of the Tof2-binding site. To highlight the different binding site recognized by the type II CIP-box of Tof2, the Sld5 type I CIP-box is also shown,

overlaid in red on the structure. The top view shows trimeric Ctf4CTD with three bound Tof2 peptides.

See also Figure S4.
Remarkably, the peptide bound to a different site to that recog-

nized by the ‘‘type I’’ CIP-boxes of Dna2, Sld5, and Pol1, namely

to the side of the C-terminal blade in the b-propeller domain of

Ctf4CTD (Figure 4E). To validate these findings, we used the
390 Molecular Cell 63, 385–396, August 4, 2016
crystal structure to generate the ctf4-3E allele, by glutamate

mutation of three key hydrophobic residues at the interface

between Ctf4 and the Tof2 CIP-box (Figure 5A). Critically, the

ctf4-3E mutations abolished interaction with full-length Tof2 in
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Figure 5. The ctf4-3E Allele Disrupts the Binding Site for Type II CIP-Box Proteins

(A) Close-up view of the Tof2 binding site on the Ctf4CTD surface, highlighting the position of Ctf4 amino acidsM731, I740, and L756 at the binding interface, which

were mutated to make the ctf4-3E allele.

(B) Ctf4-3E did not interact with the type II CIP-box proteins Tof2 or Dpb2 in the two-hybrid assay, though interactionwith type I CIP-box proteins such as Pol1 and

Dna2 was unaffected.

(C) Conversely, Ctf4-4E could not interact with type I CIP-box proteins, but still interacted with the type II CIP-box proteins Tof2 and Dpb2.

(D) Mcm4 was isolated from extracts of the indicated strains, grown as in Figure 2D.

(E) ctf4-3E is not synthetic lethal with mrc1D or ctf18D. The cells were processed as in Figure 2E.

(F) ctf4-3E cells do not share the sensitivity of ctf4D cells to growth in the presence of hydroxyurea.
the yeast two-hybrid assay, without affecting interaction with

Dna2 and Pol1 (Figure 5B). Moreover, Ctf4-3E was unable to

interact with Dpb2 in the same assay (Figure 5B). Conversely,

Ctf4-4E (with mutated binding site for type I CIP-boxes) was still

able to interact with both Tof2 and Dpb2 (Figure 5C), despite

being unable to interact with Dna2 and Pol1 as described

above. These findings indicate that both Tof2 and Dpb2 are

archetypal ‘‘type II CIP-box proteins’’, with a distinct binding

site on Ctf4 to the type I CIP-boxes of factors such as Dna2,

Pol1, and Sld5.
Tethering of Tof2 to Ctf4 Is Important for rDNA
Maintenance
We introduced the ctf4-3Emutations into the endogenous CTF4

locus in yeast cells and then compared the resulting phenotypes

with those of ctf4-4E and ctf4-I901E. In contrast to the effects of

displacing type I CIP-box proteins from Ctf4 (ctf4-4E and ctf4-

I901E; Figures 2 and S2), the Ctf4-3E mutations did not prevent

association of Ctf4 with the CMG helicase (Figure 5D). Moreover,

ctf4-3E cells were not synthetic lethal withmrc1D or ctf18D (Fig-

ure 5E) anddid not showsensitivity to dNTPdepletion (Figure 5F).
Molecular Cell 63, 385–396, August 4, 2016 391
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Figure 6. Interaction of the Type II CIP-Box Protein Tof2 with Ctf4 Is Important for rDNA Maintenance

(A) Pulse field gel electrophoresis of chromosomal DNA from control cells (W303-1a) and ctf4-4E (YFV11), as in Figure 3G.

(B) Similar experiments for control and ctf4-3E (YFV31).

(C) Neither tof2-4A nor tof2D is synthetic lethal with mec1D.

(D) Transcriptional silencing in the ‘‘Non-Transcribed Spacer 1’’ region of the rDNA repeat requires Tof2, but is independent of the association between Tof2 and

Ctf4. The URA3 marker was inserted at the leu2 locus or within the NTS1 or NTS2 sites within an rDNA repeat on chromosome 12. The expression of URA3 was

then monitored on selective plates for the indicated strains.

(E) The size of chromosome 12 is reduced in tof2-4A cells (YFV36), slightly more in tof2D (YFV30), and even more in ctf4-3E.

See also Figure S5.
We then used pulse field gel electrophoresis to examine

maintenance of the rDNA array. The size of chromosome 12

was extremely heterogenous in ctf4-4E (Figure 6A) or ctf4-

I901E (F.V. and K.L., unpublished data), indicating that the

rDNA array is highly unstable when Ctf4 is unable to associate

with the CMG helicase, so that all type I and type II CIP-box

proteins are displaced from the replisome. In contrast, chromo-

some 12 was not heterogeneous in ctf4-3E cells compared

to wild-type, but instead was much smaller (Figure 6B), indi-

cating that the association of one or more type II CIP-box pro-

teins with Ctf4 is important to preserve the normal size of the

rDNA array.

We focused on Tof2, given its established role in rDNA

biology (Corbett et al., 2010; Geil et al., 2008; Huang et al.,

2006; Johzuka and Horiuchi, 2009). Neither tof2-4A nor tof2D
392 Molecular Cell 63, 385–396, August 4, 2016
were synthetic lethal with mec1D sml1D (Figure 6C), indicating

that Tof2 and its association with Ctf4 are dispensable for effi-

cient DNA synthesis at replication forks. Moreover, although

Tof2 is important to preserve transcriptional silencing within

the rDNA repeats (Huang et al., 2006), this did not require the

association of Tof2 with Ctf4 (Figure 6D; Figure S5 shows that

rDNA silencing is also not defective in either ctf4-3E or ctf4D).

However, we found that the size of chromosome 12 was

strikingly reduced in both tof2-4A and tof2D cells (Figure 6E),

indicating that tethering of Tof2 to Ctf4 is important during chro-

mosome replication for the preservation of rDNA copy number.

Interestingly, the size of chromosome 12 is reduced still further

in ctf4-3E cells (Figure 6E), suggesting that association of other

type II CIP-box proteins with Ctf4 might also contribute to rDNA

maintenance.



DISCUSSION

Although budding yeast can form colonies in the absence of

Ctf4 under laboratory conditions, the cells are extremely

sick, are unable to grow at low temperatures, are defective

in sister chromatid cohesion, and have a very high rate of

genome instability (Hanna et al., 2001; Kouprina et al., 1992;

Miles and Formosa, 1992), indicating the importance of Ctf4

for efficient chromosome duplication. Similarly, fission yeast

cells lacking the Ctf4 ortholog Mcl1 are very sick or unable

to grow (Mamnun et al., 2006; Williams and McIntosh, 2002).

In higher eukaryotes, Ctf4 has been reported to be essential

for viability in Drosophila melanogaster and is required for

replication in Xenopus laevis and human cells (Gosnell and

Christensen, 2011; Im et al., 2009; Zhu et al., 2007). Our

data indicate that these phenotypes reflect the cumulative

failure to recruit multiple CIP-box proteins to the eukaryotic re-

plisome, together with additional partners of the amino termi-

nal WD40 domain of Ctf4 such as the E3 ligase component

Mms22 in budding yeast (Buser et al., 2016; Gambus et al.,

2009; Mimura et al., 2010)

In this study and our previous work, we have identified five

CIP-box proteins of two different subtypes. The basic features

of the CIP-box appear to be a propensity to adopt a helical

conformation, plus a limited number of conserved hydrophobic

and charged residues, making it likely that additional CIP-box

proteins remain to be identified in future studies. For example,

the list of yeast proteins with sequences that closely resemble

the type I CIP-box of Sld5-Pol1-Dna2 includes the Chl1 DNA

helicase (Figure S3D), and previous work showed that chl1D

and ctf4D produce similar and epistatic defects in the establish-

ment of sister chromatid cohesion (Borges et al., 2013), sug-

gesting that they might act together. Recent work indicates

that Chl1 is indeed a type I CIP-box protein that is recruited

to the replisome by Ctf4, helping explain the role of the Ctf4

in cohesion establishment (Samora et al., 2016 [this issue of

Molecular Cell]).

The way that CIP-box proteins compete with each other for

binding to Ctf4 remains an interesting issue for future investiga-

tion. The pre-dominant partners of Ctf4 in extracts of wild-type

yeast cells appear to be GINS (and thus the CMG helicase) and

Pol a (Gambus et al., 2009), and in vitro studies of four CIP-box

proteins indicate a hierarchy of affinities for Ctf4 among the iso-

lated CIP-boxes, with the CIP-box of Sld5 binding most tightly

(affinity constant Kd = 5 mM), followed by the Pol1 CIP (25 mM)

(Simon et al., 2014), then Dna2 (230 mM), and finally Tof2 (Kd

not determinable in our fluorescence anisotropy assay). This

hierarchy (Sld5 > Pol1 > Dna2 > Tof2) is reflected in the native

mass spectrometry data by the degree of occupancy by CIP-

box peptides of their corresponding binding sites in Ctf4 (Fig-

ures S3B and S4A; Simon et al., 2014). Although the CIP-boxes

are required for the cognate proteins to bind to Ctf4, electron

microscopic studies indicate that Ctf4 has additional contacts

with the CMG helicase (Simon et al., 2014), which would also

contribute to the affinity. It remains possible that some of the

Ctf4-client interactions are regulated within the replisome by

post-translational modifications of the CIP-box proteins or of

Ctf4 itself (perhaps regulating access of CIP-box motifs to
Ctf4 in some cases). Alternatively, association of CIP-box pro-

teins and Ctf4 might require additional contacts with other pro-

teins that are only possible in the context of the replisome.

Indeed, although Ctf4 binds GINS throughout the cell cycle in

extracts of yeast cells (Gambus et al., 2009) and the same is

true for overexpressed Tof2 (Figure 4D), the association of

Ctf4 with Pol a (van Deursen et al., 2012) and Dna2 (Figure 3A)

is regulated so that it is detected in S phase, but not in

G1-phase.

The expanded set of CIP-box proteins leads to a revised

model for the role of Ctf4 at eukaryotic replication forks. In

addition to its role as a bridge between the CMG helicase

and Pol a, our data indicate that Ctf4 functions as a key hub

within the replisome, linking the helicase to a diverse set of

partners. These findings further indicate that the function of re-

plisome assembly in eukaryotes is not simply to ensure the effi-

cient synthesis of two strands of DNA at replication forks, but

also to couple fork progression to other processes that are

important for eukaryotic chromosomes to be duplicated in all

their complexity.

Notably, mutation of the CIP-box motifs of Dna2 and Tof2

does not lead to detectable defects in DNA synthesis. Instead,

association of these factors with Ctf4 is particularly important

to maintain the size of chromosome 12 that contains the very

large array of rDNA repeats. The details remain to be explored

in the future, but our findings indicate that important mecha-

nisms for rDNA copy number regulation must be coupled to

replisome function at DNA replication forks.

Whereas displacement of type II CIP-box proteins from Ctf4

leads to a reduction in the size of chromosome 12 (Figure 6B),

simultaneous displacement of all type I and type II CIP-box

proteins leads to a highly heterogeneous range of sizes for chro-

mosome 12 (Figure 6A). We anticipate that further partners

of Ctf4 will also contribute to rDNA copy number regulation,

since chromosome 12 actually becomes larger in the complete

absence of Ctf4 (Saka et al., 2016), probably reflecting the

highly complex nature of replisome-coupled rDNA maintenance

in budding yeast. The evolutionary conservation of these pro-

cesses in other eukaryotic species will be an interesting theme

to explore in future studies.

EXPERIMENTAL PROCEDURES

Yeast Methods

The strains used in this study are all based on the W303 background and are

listed in Table 1. Yeast growth, two-hybrid analysis, and immunoprecipitation

experiments were performed as described in detail previously (Maculins et al.,

2015; Maric et al., 2014). A two-hybrid screen against amino acids 461–927 of

Ctf4 was performed by the company Hybrigenics.

Sequence Analysis

Multiple sequence alignments were performed using ClustalW software and

presented using Boxshade, both of which were accessed via the website

Biology Workbench 3.2 (http://workbench.sdsc.edu). Secondary structure

predictions were performed using the Jpred 4 server (Drozdetskiy et al., 2015).

Co-crystallization of Ctf4 471–927 with the CIP-Boxes of

Dna2 and Tof2

Ctf4CTD crystals comprising residues 471–927 were grown as described

previously (Simon et al., 2014). For co-crystallization experiments, the
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peptides SLRNIDDILDDIEGDLT and SHAKDVKIQETIRKLNRFKPT, corre-

sponding to residues 207 to 223 of yeast Dna2 and amino acids 497

to 517 of yeast Tof2, respectively, were synthesized with an amino-

terminal fluorescein label (Cambridge Peptides). The Dna2 peptide was

solubilized in 20 mM ammonium bicarbonate to a concentration of

630 mM; the Tof2 peptide was solubilized in 0.2 M tri-sodium citrate

pH 6.2, 7.5% (w/v) PEG 8000, and 0.45 M NaCl to a concentration of

7 mM. For Dna2 peptide, soaking was performed by adding 1 ml of peptide

solution to a 2 ml crystallization drop containing native Ctf4CTD crystals,

whereas for Tof2 soaks, crystals were transferred straight into a 2 ml drop

of peptide solution.

The crystals were soaked with the peptide for 24 hr at 19�C, back-soaked in

crystallization buffer, and flash-frozen in liquid nitrogen. X-ray diffraction data

for Ctf4CTD crystals soaked with the Dna2 and Tof2 peptides were collected on

beamline I02 of the Diamond Light Source and processed as described previ-

ously (Simon et al., 2014). The position of the Ctf4-binding motifs of Dna2 and

Tof2 in the crystals structure of Ctf4CTD was readily identified by inspection of

Fo-Fc difference Fourier maps. Amino acids 207 to 220 of Dna2 and 502 to 513

of Tof2 were built in the electron density map and the structures of Ctf4CTD
bound to Dna2 and Tof2 were then further refined using Coot and PHENIX

Refine to R-work/R-free values of 0.181/0.227 and 0.179/0.224, respectively.

MolProbity scores for the Ctf4CTD - Dna2 and Ctf4CTD - Tof2 structures were

1.43 and 1.49, respectively. Data collection and refinement statistics are given

in Table 1.

Native Mass Spectrometry

In preparation for non-denaturing nano-electrospray ionization mass spec-

trometry (native mass spectrometry), Ctf4 471–927 was subjected to two

successive rounds of buffer exchange into 500 mM ammonium acetate using

illustra NAP-5 columns (GE Healthcare). Following buffer exchange, a 5-fold or

10-foldmolar excess of Dna2 peptide 207- SLRNIDDILDDIEGDLT -223 or Tof2

peptide 497- SHAKDVKIQETIRKLNRFKPT -517 solubilized in 500 mM ammo-

nium acetate wasmixed with Ctf4CTD at a final protein concentration of 100 mM

and incubated for aminimumof 30min. Nativemass spectra were recorded on

a Synapt HDMS instrument (Waters) and calibrated using caesium iodide

(100mgml�1) as described previously (Hernández and Robinson, 2007; Simon

et al., 2014).

Analysis of Molecular Weight of Ctf4-4E by Multi-angle Light

Scattering

100 ml of Ctf4CTD 4E mutant protein (with mutated binding site for type I CIP-

boxes) at a concentration of 2 mg/ml was loaded onto a Superdex S200 HR

10/300 gel-filtration column (GE Healthcare) in 20 mM HEPES pH 7.2,

160 mM NaCl at a flow rate of 0.5 ml/min. The column was controlled using

an Äkta Purifier System (GE Healthcare) and was linked to a DAWN 8+ 8-angle

light scattering detector (Wyatt Technology) with a fused silica sample cell

using a laser wavelength of 664 nm. The change in the refractive index was

detected using an Optilab T-rEX refractometer with extended range (Wyatt

Technology) using a wavelength of 658 nm. Data collection and analysis was

carried out using the ASTRA6 software package (Wyatt Technology). Molecu-

lar weight determination across the sample peak was carried out using a

Zimm-plot derived global fitting algorithm with a fit degree of 1 and a dn/dc

value of 0.1850 ml/g.

GST-Pull-Downs

For each Dna2 construct to be tested for interaction with Ctf4CTD, a 25-ml

E. coli Rosetta2 (DE3) culture overexpressing the GST-fusion construct was

pelleted, resuspended in buffer (50 mM Tris [pH 7.0], 500 mM NaCl, 10%

[w/v] glycerol, 1 mM DTT, and protease inhibitors) (Sigma), and lysed by son-

ication. Following centrifugation, the soluble extract was mixed with 50 ml of

Glutathione Sepharose beads (GE Healthcare) pre-equilibrated in the same

buffer, and incubated under rotation at 4�C for 1 hr. Unbound protein was

removed by three consecutive washes with 1 ml of buffer, followed by three

1-ml washes with pull-down buffer (20 mM HEPES [pH 7.2], 150 mM NaCl,

5% [w/v] glycerol, 0.1% Igepal CA-630, 1 mM TCEP, and 1% BSA). Subse-

quently, 500 ml of purified Ctf4CTD protein at a concentration of 2 mg/ml was

added to the Sepharose beads and binding was allowed to take place for an
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additional 1 hr at 4�C. The binding reaction was stopped by two consecutive

washes with 1 ml of pull-down buffer and a final 1 ml wash with pull-down

buffer without BSA. The Sepharose beads were mixed with SDS loading dye

and Ctf4CTD interactions with the respective bait proteins were detected via

SDS-PAGE. As a control, Ctf4CTD was tested for unspecific interaction with

theGlutathione Sepharose resin andwith GST and in both cases no interaction

was detected.

Fluorescence Anisotropy

The lowest concentration of peptide at which the binding studies could be

performed was determined via peptide calibration curves. Fluorescence

anisotropy measurements were recorded in a PHERAstar Plus multi-detec-

tion plate reader (BMG Labtech) equipped with fluorescence polarization op-

tic module (lex = 485 nm; lem = 520 nm) at 25�C. Each data point is the mean

of 200 flashes/well. The voltage gain was set by adjusting the target mP

values of fluorescein-labeled peptides relative to that of fluorescein (35

mP). Serial dilutions of Ctf4CTD were made in 20 mM HEPES (pH 7.2),

140 mM KCl, and 5% (w/v) glycerol in the presence of 40 nM (Sld5 and

Tof2) or 50 nM (Dna2) fluorescein-labeled peptide. For Dna2 peptide, each

data point is the mean of three independent experiments and curve fitting

to the experimental data was performed in pro Fit 6.2 (QuantumSoft) using

a Levenberg-Marquardt fitting algorithm in combination with a Gaussian error

distribution analysis. The interaction between Ctf4CTD and Tof2 peptide was

too weak to be quantified reliably and data points were derived from a single

measurement.

Pulse Field Gel Electrophoresis

A 30 ml aliquot of mid-exponential culture (about 2 3 108 cells) was taken for

each sample and processed using the CHEF Yeast Genomic DNA Plug Kit

(Bio-Rad, 170-3593), according to the manufacturer’s instructions (6 3

108 cells per ml of agarose plug). A 3 mm slice of each plug was loaded

on a 0.8% agarose (Certified Megabase Agarose, Bio-Rad, 161-3108) gel

made in 13 Tris-Borate-EDTA buffer (TBE). Chromosomal DNA was sepa-

rated using a CHEF-DR II system (Bio-Rad) with 13 TBE as running buffer,

at 14�C for 90 hr at 3V/cm, with switch times ramping from 300 to 900 s. The

gel was stained with 1 mg/ml ethidium bromide and photographed, before

transfer of DNA to Hybond-XL membranes (GE Healthcare Life Sciences,

RPN 203 S), using a VacuGene XL vacuum blotting system (GE Healthcare

Life Sciences). Membranes were hybridized with a probe for the rDNA (Chro-

mosome XII, 466875-467891), labeled with [a-32P]-dCTP using a Random

Primed DNA labeling Kit (Roche, 11 004 760 001). For detection, mem-

branes were exposed to BAS Imaging Plates (Fujifilm), which were then

analyzed using a FLA-5100 scanner and AIDA Image Analysis software

(Raytest).
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