170 research outputs found

    A probabilistic definition of salient regions for image matching

    Get PDF
    A probabilistic definition of saliency is given in a form suitable for applications to image matching. In order to make this definition, the values of the pixels in pairs of matching regions are modeled using an elliptically symmetric distribution (ESD). The values of the pixels in background pairs of regions are also modeled using an ESD. If a region is given in one image, then the conditional probability density function for the pixel values in a matching region can be calculated. The saliency of the given region is defined to be the Kullback-Leibler divergence between this conditional pdf and a background conditional pdf. Experiments carried out using images in the Middlebury stereo database show that if the salience of a given image region is high, then there are relatively few background regions that have a better match to the given region than the true matching region

    Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna

    Get PDF
    The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate

    Measurement of Branching Fractions and Charge Asymmetries for Two-Body B Meson Decays with Charmonium

    Full text link
    We report branching fractions and charge asymmetries for exclusive decays of charged and neutral B mesons to two-body final states containing a charmonium meson, J/psi or psi(2S). This result is based on a 29.4 fb^{-1} data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e+e- collider.Comment: 13 pages, 5 figures, revte

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    An Integrated Model for User Attribute Discovery: A Case Study on Political Affiliation Identification

    Get PDF
    Discovering user demographic attributes from social media is a problem of considerable interest. The problem setting can be generalized to include three components - users, topics and behaviors. In recent studies on this problem, however, the behavior between users and topics are not effectively incorporated. In our work, we proposed an integrated unsupervised model which takes into consideration all the three components integral to the task. Furthermore, our model incorporates collaborative filtering with probabilistic matrix factorization to solve the data sparsity problem, a computational challenge common to all such tasks. We evaluated our method on a case study of user political affiliation identification, and compared against state-of-the-art baselines. Our model achieved an accuracy of 70.1% for user party detection task. ? 2014 Springer International Publishing.EI

    Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies

    Get PDF
    We determine the relative rates of short GRBs in cluster and field early-type galaxies as a function of the age probability distribution of their progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the difference in the growth of stellar mass in clusters and in the field, which arises from the combined effects of the galaxy stellar mass function, the early-type fraction, and the dependence of star formation history on mass and environment. This approach complements the use of the early- to late-type host galaxy ratio, with the added benefit that the star formation histories of early-type galaxies are simpler than those of late-type galaxies, and any systematic differences between progenitors in early- and late-type galaxies are removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n = -2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2, corresponding to n ~ 0 - 1. This is similar to the value inferred from the ratio of short GRBs in early- and late-type hosts, but it differs from the value of n ~ -1 for NS binaries in the Milky Way. We stress that this general approach can be easily modified with improved knowledge of the effects of environment and mass on the build-up of stellar mass, as well as the effect of globular clusters on the short GRB rate. It can also be used to assess the age distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    High mass photon pairs in ℓ+ℓ−γγ events at LEP

    Full text link

    A determination of electroweak parameters from Z0→μ+μ- (γ)

    Full text link

    Measurement of Z0 decays to hadrons, and a precise determination of the number of neutrino species

    Get PDF
    We have made a precise measurement of the cross section for e+e--->Z0-->hadrons with the L3 detector at LEP, covering the range from 88.28 to 95.04 GeV. From a fit to the Z0 mass, total width, and the hadronic cross section to be MZ0=91.160 +/- 0.024 (experiment) +/-0.030(LEP) GeV, [Gamma]Z0=2.539+/-0.054 GeV, and [sigma]h(MZ0)=29.5+/-0.7 nb. We also used the fit to the Z0 peak cross section and the width todetermine [Gamma]invisible=0.548+/-0.029 GeV, which corresponds to 3.29+/-0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4[sigma] confidence level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28683/3/0000500.pd
    corecore