13 research outputs found

    Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    Get PDF
    We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space discretization, our implementation provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner (LMW) benchmark [1]

    The parareal in time algorithm applied to the kinetic neutron diffusion equation

    Get PDF
    International audienceIn the framework of nuclear core calculations, the development of efficient tools to run neutron kinetic computations is a field of current active research. While such calculations are crucial for security assessment and the study of new reactor concepts, they present several mathematical and computational issues that still need to be overcome. The exact model (kinetic transport equation) is indeed far too expensive to be simulated for these purposes and different simplifications (multi group diffusion approximation) have led to more tractable numerical simulations. Nevertheless, on real geometries and despite the use of domain decomposition enabling accelerations of the simulations thanks to parallel architectures, there is still need for improvements for applications on regular basis. In this context, the purpose of this work is to investigate the implementation of the parareal in time algorithm within an industrial solver called MINOS developed at C.E.A

    Changing fish distributions challenge the effective management of European fisheries.

    Get PDF
    Changes in fish distribution are being observed across the globe. In Europe's Common Fisheries Policy, the share of the catch of each fish stock is split among management areas using a fixed allocation key known as ‘Relative Stability’: in each management area, member states get the same proportion of the total catch each year. That proportion is largely based on catches made by those member states in the 1970s. Changes in distribution can, therefore, result in a mismatch between quota shares and regional abundances within management areas, with potential repercussions for the status of fish stocks and the fisheries that depend on them. Assessing distribution changes is crucial to ensure adequate management and sustainable exploitation of our fish resources. We analysed scientific survey data using a three‐tiered analytical approach to provide, for the first time, an overview of changes in distribution for 19 northeast Atlantic fish species encompassing 73 commercial stocks over 30 yr. All species have experienced changes in distribution, five of which did so across management areas. A cross‐species analysis suggested that shifts in areas of suitable thermal habitat, and density‐dependent use of these areas, are at least partly responsible for the observed changes. These findings challenge the current use of relative stability to allocate quotas.acceptedVersio

    The multi-physics improved quasi-static method - Application to a neutronics-thermomechanics coupling

    No full text
    International audienceThe quasi-static method is widely used for space- and time-dependent neutron transport problems. It is based on the factorization of the flux into the product of two functions, an “amplitude” depending only on time and a “shape” which depends on all variables. Thanks to this factorization, long time-steps can be used for the computation of the shape, leading to a substantial reduction of the calculation time. Two algorithms, based on the quasi-static factorization, can be found in the literature: the “Improved Quasi-static Method” (IQM), and the “Predictor-Corrector Quasi-static Method” (PCQM).In this paper we show, on the example of the Godiva experiment, that the IQM algorithm can be easily adapted to multi-physics simulations. Moreover, most of the common coupling or time-step control strategies are compatible with this algorithm and we test some of them here. In particular, a technique taken from existing codes with point-kinetic modules and based on feedback coefficients is found, in our case, to be especially efficient and gives precise and fast results. This shows that the multi-physics IQM presented in this paper is compatible with these existing codes, and may be a way to couple them with neutron transport solvers

    ices-eg/wkfishdish-manuscript-analysis

    No full text
    Release of code and intial data to recreate an analysis of fish distribution changes using ICES DATRAS survey data

    COvid-19 and high-dose VITamin D supplementation TRIAL in high-risk older patients (COVIT-TRIAL): study protocol for a randomized controlled trial

    No full text
    International audienceAbstract Background With the lack of effective therapy, chemoprevention, and vaccination against SARS-CoV-2, focusing on the immediate repurposing of existing drugs gives hope of curbing the COVID-19 pandemic. A recent unbiased genomics-guided tracing of the SARS-CoV-2 targets in human cells identified vitamin D among the three top-scoring molecules manifesting potential infection mitigation patterns. Growing pre-clinical and epidemiological observational data support this assumption. We hypothesized that vitamin D supplementation may improve the prognosis of COVID-19. The aim of this trial is to compare the effect of a single oral high dose of cholecalciferol versus a single oral standard dose on all-cause 14-day mortality rate in COVID-19 older adults at higher risk of worsening. Methods The COVIT-TRIAL study is an open-label, multicenter, randomized controlled superiority trial. Patients aged ≄ 65 years with COVID-19 (diagnosed within the preceding 3 days with RT-PCR and/or chest CT scan) and at least one worsening risk factor at the time of inclusion (i.e., age ≄ 75 years, or SpO2 ≀ 94% in room air, or PaO2/FiO2 ≀ 300 mmHg), having no contraindications to vitamin D supplementation, and having received no vitamin D supplementation > 800 IU/day during the preceding month are recruited. Participants are randomized either to high-dose cholecalciferol (two 200,000 IU drinking vials at once on the day of inclusion) or to standard-dose cholecalciferol (one 50,000 IU drinking vial on the day of inclusion). Two hundred sixty participants are recruited and followed up for 28 days. The primary outcome measure is all-cause mortality within 14 days of inclusion. Secondary outcomes are the score changes on the World Health Organization Ordinal Scale for Clinical Improvement (OSCI) scale for COVID-19, and the between-group comparison of safety. These outcomes are assessed at baseline, day 14, and day 28, together with the serum concentrations of 25(OH)D, creatinine, calcium, and albumin at baseline and day 7. Discussion COVIT-TRIAL is to our knowledge the first randomized controlled trial testing the effect of vitamin D supplementation on the prognosis of COVID-19 in high-risk older patients. High-dose vitamin D supplementation may be an effective, well-tolerated, and easily and immediately accessible treatment for COVID-19, the incidence of which increases dramatically and for which there are currently no scientifically validated treatments. Trial registration ClinicalTrials.gov NCT04344041 . Registered on 14 April 2020 Trial status Recruiting. Recruitment is expected to be completed in April 2021
    corecore