39 research outputs found

    Interleukin-18 produced by bone marrow- derived stromal cells supports T-cell acute leukaemia progression

    Get PDF
    International audienceDevelopment of novel therapies is critical for T-cell acute leukae-mia (T-ALL). Here, we investigated the effect of inhibiting the MAPK/MEK/ERK pathway on T-ALL cell growth. Unexpectedly, MEK inhibitors (MEKi) enhanced growth of 70% of human T-ALL cell samples cultured on stromal cells independently of NOTCH activa-tion and maintained their ability to propagate in vivo. Similar results were obtained when T-ALL cells were cultured with ERK1/ 2-knockdown stromal cells or with conditioned medium from MEKi-treated stromal cells. Microarray analysis identified interleu-kin 18 (IL-18) as transcriptionally up-regulated in MEKi-treated MS5 cells. Recombinant IL-18 promoted T-ALL growth in vitro, whereas the loss of function of IL-18 receptor in T-ALL blast cells decreased blast proliferation in vitro and in NSG mice. The NFKB pathway that is downstream to IL-18R was activated by IL-18 in blast cells. IL-18 circulating levels were increased in T-ALL-xeno-grafted mice and also in T-ALL patients in comparison with controls. This study uncovers a novel role of the pro-inflammatory cytokine IL-18 and outlines the microenvironment involvement in human T-ALL development

    NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia

    Get PDF
    TAL1 (also known as SCL) is expressed in >40% of human T cell acute lymphoblastic leukemias (T-ALLs). TAL1 encodes a basic helix-loop-helix transcription factor that can interfere with the transcriptional activity of E2A and HEB during T cell leukemogenesis; however, the oncogenic pathways directly activated by TAL1 are not characterized. In this study, we show that, in human TAL1–expressing T-ALL cell lines, TAL1 directly activates NKX3.1, a tumor suppressor gene required for prostate stem cell maintenance. In human T-ALL cell lines, NKX3.1 gene activation is mediated by a TAL1–LMO–Ldb1 complex that is recruited by GATA-3 bound to an NKX3.1 gene promoter regulatory sequence. TAL1-induced NKX3.1 activation is associated with suppression of HP1-α (heterochromatin protein 1 α) binding and opening of chromatin on the NKX3.1 gene promoter. NKX3.1 is necessary for T-ALL proliferation, can partially restore proliferation in TAL1 knockdown cells, and directly regulates miR-17-92. In primary human TAL1-expressing leukemic cells, the NKX3.1 gene is expressed independently of the Notch pathway, and its inactivation impairs proliferation. Finally, TAL1 or NKX3.1 knockdown abrogates the ability of human T-ALL cells to efficiently induce leukemia development in mice. These results suggest that tumor suppressor or oncogenic activity of NKX3.1 depends on tissue expression

    The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11.

    Get PDF
    Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies

    SCL, LMO1 and NOTCH1 reprogram thymocytes into self-renewing cells

    No full text

    Oncogene-Induced Reprogramming in Acute Lymphoblastic Leukemia: Towards Targeted Therapy of Leukemia-Initiating Cells

    No full text
    International audienceOur understanding of the hierarchical structure of acute leukemia has yet to be fully translated into therapeutic approaches. Indeed, chemotherapy still has to take into account the possibility that leukemia-initiating cells may have a distinct chemosensitivity profile compared to the bulk of the tumor, and therefore are spared by the current treatment, causing the relapse of the disease. Therefore, the identification of the cell-of-origin of leukemia remains a longstanding question and an exciting challenge in cancer research of the last few decades. With a particular focus on acute lymphoblastic leukemia, we present in this review the previous and current concepts exploring the phenotypic, genetic and functional heterogeneity in patients. We also discuss the benefits of using engineered mouse models to explore the early steps of leukemia development and to identify the biological mechanisms driving the emergence of leukemia-initiating cells. Finally, we describe the major prospects for the discovery of new therapeutic strategies that specifically target their aberrant stem cell-like functions

    Piperazinobenzopyranones and phenalkylaminobenzopyranones: potent inhibitors of breast cancer resistance protein (ABCG2).

    No full text
    International audienceIn continuing research that led us to identify chromanone derivatives (J. Med. Chem. 2003, 46, 2125) as P-glycoprotein inhibitors, we obtained analogues able to modulate multidrug resistance (MDR) mediated by the breast cancer resistance protein (BCRP). The linkage of 5-hydroxybenzopyran-4-one to piperazines or phenalkylamines affords highly potent inhibitors of BCRP. By using sensitive (HCT116) and resistant colon cancer cells expressing BCRP, we evaluated the effect of 14 benzopyranone (chromone) derivatives on the accumulation and the cytotoxic effect of the anticancer drug, mitoxantrone. At 10 microM, three compounds increased both intracellular accumulation and cytotoxicity of mitoxantrone in HCT116/R cells with a comparable rate as fumitremorgin C and Gleevec used as reference inhibitors. The most potent molecules 5b and 5c are still active at 1 microM, whereas FTC shows weak inhibition. These molecules do not induce cell death as shown by the cell cycle distribution study, which makes them potential candidates for in vivo studies
    corecore