44 research outputs found
The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era
In the updated APOGEE-Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Delta alpha(ML), YREC similar to 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H]- -0.5)
Limpet Shells from the Aterian Level 8 of El Harhoura 2 Cave (Témara, Morocco): Preservation State of Crossed-Foliated Layers
International audienceThe exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around * 100 ka BP) of El Har-houra 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by Middle Palaeolithic (Aterian) populations in North Africa for consumption
Retinoic Acid Increases Proliferation of Human Osteoclast Progenitors and Inhibits RANKL-Stimulated Osteoclast Differentiation by Suppressing RANK
It has been shown that high vitamin A intake is associated with bone fragility and fractures in both animals and humans. However, the mechanism by which vitamin A affects bones is unclear. In the present study, the direct effects of retinoic acid (RA) on human and murine osteoclastogenesis were evaluated using cultured peripheral blood CD14+ monocytes and RAW264.7 cells. Both the activity of the osteoclast marker tartrate resistant acid phosphatase (TRAP) in culture supernatant and the expression of the genes involved in osteoclast differentiation together with bone resorption were measured. To our knowledge, this is the first time that the effects of RA on human osteoclast progenitors and mature osteoclasts have been studied in vitro. RA stimulated proliferation of osteoclast progenitors both from humans and mice. In contrast, RA inhibited differentiation of the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis of human and murine osteoclast progenitors via retinoic acid receptors (RARs). We also show that the mRNA levels of receptor activator of nuclear factor κB (RANK), the key initiating factor and osteoclast associated receptor for RANKL, were potently suppressed by RA in osteoclast progenitors. More importantly, RA abolished the RANK protein in osteoclast progenitors. This inhibition could be partially reversed by a RAR pan-antagonist. Furthermore, RA treatment suppressed the expression of the transcription factor nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and increased the expression of interferon regulatory factor-8 (IRF-8) in osteoclast progenitors via RARs. Also, RA demonstrated differential effects depending on the material supporting the cell culture. RA did not affect TRAP activity in the culture supernatant in the bone slice culture system, but inhibited the release of TRAP activity if cells were cultured on plastic. In conclusion, our results suggest that retinoic acid increases proliferation of human osteoclast progenitors and that it inhibits RANK-stimulated osteoclast differentiation by suppressing RANK
Human resources: the Cinderella of health sector reform in Latin America
Human resources are the most important assets of any health system, and health workforce problems have for decades limited the efficiency and quality of Latin America health systems. World Bank-led reforms aimed at increasing equity, efficiency, quality of care and user satisfaction did not attempt to resolve the human resources problems that had been identified in multiple health sector assessments. However, the two most important reform policies – decentralization and privatization – have had a negative impact on the conditions of employment and prompted opposition from organized professionals and unions. In several countries of the region, the workforce became the most important obstacle to successful reform. This article is based on fieldwork and a review of the literature. It discusses the reasons that led health workers to oppose reform; the institutional and legal constraints to implementing reform as originally designed; the mismatch between the types of personnel needed for reform and the availability of professionals; the deficiencies of the reform implementation process; and the regulatory weaknesses of the region. The discussion presents workforce strategies that the reforms could have included to achieve the intended goals, and the need to take into account the values and political realities of the countries. The authors suggest that autochthonous solutions are more likely to succeed than solutions imported from the outside
Recommended from our members
The tenth data release of the Sloan digital sky survey: First spectroscopic data from the SDSS-iii apache point observatory galactic evolution experiment
The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the tenth public data release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ~ 22,500 300-fiber spectrograph covering 1:514-1:696 μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included.
DR10 also roughly doubles the number of BOSS spectra over those included in the ninth data release. DR10 includes a total of 1,507,954 BOSS spectra, comprising 927,844 galaxy spectra; 182,009 quasar spectra; and 159,327 stellar spectra, selected over 6373.2 deg2.This is an author-created, un-copyedited version of an article accepted for publication in The Astrophysical Journal Supplement Series. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0067-0049/211/2/17. The accepted version will be under embargo until the 18th March 2015
Exoplanet mass estimation for a sample of targets for the <i>Ariel</i> mission
Ariel’s ambitious goal to survey a quarter of known exoplanets will transform our knowledge of planetary atmospheres. Masses measured directly with the radial velocity technique are essential for well determined planetary bulk properties. Radial velocity masses will provide important checks of masses derived from atmospheric fits or alternatively can be treated as a fixed input parameter to reduce possible degeneracies in atmospheric retrievals. We quantify the impact of stellar activity on planet mass recovery for the Ariel mission sample using Sun-like spot models scaled for active stars combined with other noise sources. Planets with necessarily well-determined ephemerides will be selected for characterisation with Ariel. With this prior requirement, we simulate the derived planet mass precision as a function of the number of observations for a prospective sample of Ariel targets. We find that quadrature sampling can significantly reduce the time commitment required for follow-up RVs, and is most effective when the planetary RV signature is larger than the RV noise. For a typical radial velocity instrument operating on a 4 m class telescope and achieving 1 m s−1 precision, between ~17% and ~ 37% of the time commitment is spent on the 7% of planets with mass Mp ⊕. In many low activity cases, the time required is limited by asteroseismic and photon noise. For low mass or faint systems, we can recover masses with the same precision up to ~3 times more quickly with an instrumental precision of ~10 cm s−1
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V
Recommended from our members
Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run
The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius, and mass) of the observed stars. We present revised stellar properties for 197,096 Kepler targets observed between Quarters 1-17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1-16 catalog by Huber et al., the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted method and over 29,000 new sources for temperatures, surface gravities, or metallicities. In addition to fundamental stellar properties, the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ∼27% in radius, ∼17% in mass, and ∼51% in density, which is somewhat smaller than previous catalogs because of the larger number of improved constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with a particular focus on exoplanet host stars