31 research outputs found

    Pulsed Photoconductive Connected Slot Array Operating at the Sub-mm Wavelength Band

    Get PDF
    A novel pulsed photoconductive THz source is presented that is able to radiate mW-level average powers, over a large bandwidth by exploiting both the optical and electrical properties of photoconductive sources and the ultrawideband properties of connected antenna arrays. An optical system composed of a micro-lenses array splits the laser beam into N x N spots that host the active excitation of the antenna arrays. An “ad hoc” network has been adopted to bias the array active spots in order to implement a connected antenna array configuration. The array feeds a silicon lens to increase the directivity of the radiated THz beam. A slot array prototype has been designed, fabricated, and measured. The proposed solutions achieve excellent power radiation levels by making use of an accurate electromagnetic design. This solution can offer enhancements to any active system relying on pulsed photoconductive antennas

    Supercurrent reversal in quantum dots

    Full text link
    When two superconductors become electrically connected by a weak link a zero-resistance supercurrent can flow. This supercurrent is carried by Cooper pairs of electrons with a combined charge of twice the elementary charge, e. The 2e charge quantum is clearly visible in the height of Shapiro steps in Josephson junctions under microwave irradiation and in the magnetic flux periodicity of h/2e in superconducting quantum interference devices. Several different materials have been used to weakly couple superconductors, such as tunnel barriers, normal metals, or semiconductors. Here, we study supercurrents through a quantum dot created in a semiconductor nanowire by local electrostatic gating. Due to strong Coulomb interaction, electrons only tunnel one-by-one through the discrete energy levels of the quantum dot. This nevertheless can yield a supercurrent when subsequent tunnel events are coherent. These quantum coherent tunnelling processes can result in either a positive or a negative supercurrent, i.e. in a normal or a pi-junction, respectively. We demonstrate that the supercurrent reverses sign by adding a single electron spin to the quantum dot. When excited states of the quantum dot are involved in transport, the supercurrent sign also depends on the character of the orbital wavefunctions

    Imaging spontaneous currents in superconducting arrays of pi-junctions

    Full text link
    Superconductors separated by a thin tunneling barrier exhibit the Josephson effect that allows charge transport at zero voltage, typically with no phase shift between the superconductors in the lowest energy state. Recently, Josephson junctions with ground state phase shifts of pi proposed by theory three decades ago have been demonstrated. In superconducting loops, pi-junctions cause spontaneous circulation of persistent currents in zero magnetic field, analogous to spin-1/2 systems. Here we image the spontaneous zero-field currents in superconducting networks of temperature-controlled pi-junctions with weakly ferromagnetic barriers using a scanning SQUID microscope. We find an onset of spontaneous supercurrents at the 0-pi transition temperature of the junctions Tpi = 3 K. We image the currents in non-uniformly frustrated arrays consisting of cells with even and odd numbers of pi-junctions. Such arrays are attractive model systems for studying the exotic phases of the 2D XY-model and achieving scalable adiabatic quantum computers.Comment: Pre-referee version. Accepted to Nature Physic

    SQUIPT - Superconducting Quantum Interference Proximity Transistor

    Full text link
    We present the realization and characterization of a novel-concept interferometer, the superconducting quantum interference proximity transistor (SQUIPT). Its operation relies on the modulation with the magnetic field of the density of states of a proximized metallic wire embedded in a superconducting ring. Flux sensitivities down to ∌10−5Ί0\sim 10^{-5} \Phi_0Hz−1/2^{-1/2} can be achieved even for a non-optimized design, with an intrinsic dissipation (∌100\sim 100 fW) which is several orders of magnitude smaller than in conventional superconducting interferometers. Our results are in agreement with the theoretical prediction of the SQUIPT behavior, and suggest that optimization of the device parameters would lead to a large enhancement of sensitivity for the detection of tiny magnetic fields. The features of this setup and their potential relevance for applications are further discussed.Comment: 5+ pages, 5 color figure

    Exploring Cosmic Origins with CORE: Survey requirements and mission design

    Get PDF
    Future observations of cosmic microwave background (CMB) polarisation havethe potential to answer some of the most fundamental questions of modernphysics and cosmology. In this paper, we list the requirements for a future CMBpolarisation survey addressing these scientific objectives, and discuss thedesign drivers of the CORE space mission proposed to ESA in answer to the "M5"call for a medium-sized mission. The rationale and options, and themethodologies used to assess the mission's performance, are of interest toother future CMB mission design studies. CORE is designed as a near-ultimateCMB polarisation mission which, for optimal complementarity with ground-basedobservations, will perform the observations that are known to be essential toCMB polarisation scienceand cannot be obtained by any other means than adedicated space mission

    Industrial Resources: Letcher County - Whitesburg

    Get PDF
    Summary of Industrial Resources: Whitesburg, [Kentucky] prepared by the Kentucky Department of Commerce, Division of Research and Planning, Frankfort, Kentucky. 1978. The report includes, but is not limited to, information about: population, labor market, local manufacturing, transportation, utilities, fuels, water, sewage,industrial sites, local government and service, taxes, education and health facilities, housing, communication, recreation, natural resources, markets, and climate

    EBG enhanced dielectric lens antennas for the imaging at sub-mm waves

    Get PDF
    This paper presents a truly integrated antennas in mm and sub-mm wave regimes can be realized by printing planar radiating elements in the focal plane of elliptical or extended hemispherical lens antennas. The elliptical shape of the lens gives high focusing properties provided that its eccentricity is properly related to its dielectric constant (e=1/epsiv1/2 r). In the frame of cooperation activity between TNO and SRON, the main purpose of this contribution is to present a new way to increase the directivity of the focal plane feeds typically used to excite such lenses. The driving reason for this effort is the desire to diminish the impact of the reflections at the dielectric air interface when these structures are proposed as focal plane imagers

    Leaky lens based UWB focal plane arrays for sub-mm wave imaging based on kinetic inductance detectors

    Get PDF
    This work highlights some of the results of a cooperation between TNO and SRON (Space Research Organization Netherlands) which is now going on with renewed efforts since almost two years. A novel strategy for broad band focal plane array design is proposed. Its purpose is to couple the radiation from a large F/D reflector system to an array of kinetic inductance detectors that are being investigated at SRON to be used in Space science missions such as SPICA [1]. To maximize the benefits from using their BW properties one idea is to use leaky lens based array elements, as imaging pixels, however other possibilities are also envisaged

    Kinetic inductance detectors based receiver array architectures for imaging at THz frequency

    Get PDF
    A novel strategy for broad band focal plane array design, resulting from the two years long cooperation between TNO and SRON (Space Research Organization Netherlands), is proposed. Its purpose is to couple the radiation from a Large F/D reflector system to an array of Kinetic Inductance detectors that are being investigated at SRON to be used in Space science missions such as SPICA
    corecore