433 research outputs found

    A Community-Building Framework for Collaborative Research Coordination across the Education and Biology Research Disciplines

    Get PDF
    Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who are fostering improved and innovative approaches to biology education. When faculty members collaborate with the overarching goal of advancing undergraduate biology education, there is a need to optimize collaboration between participants in order to deeply integrate the knowledge across disciplinary boundaries. In this essay we propose a novel guiding framework for bringing colleagues together to advance knowledge and its integration across disciplines, the “Five ‘C’s’ of Collaboration: Commitment, Collegiality, Communication, Consensus, and Continuity.” This guiding framework for professional network practice is informed by both relevant literature and empirical evidence from community-building experience within the RCN-UBE Advancing Competencies in Experimentation–Biology (ACE-Bio) Network. The framework is presented with practical examples to illustrate how it might be used to enhance collaboration between new and existing participants in the ACE-Bio Network as well as within other interdisciplinary networks

    Large emissions from floodplain trees close the Amazon methane budget

    Get PDF
    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (ÎŽ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources

    Plug-and-play inference for disease dynamics: measles in large and small populations as a case study

    Get PDF
    Statistical inference for mechanistic models of partially observed dynamic systems is an active area of research. Most existing inference methods place substantial restrictions upon the form of models that can be fitted and hence upon the nature of the scientific hypotheses that can be entertained and the data that can be used to evaluate them. In contrast, the so-called plug-and-play methods require only simulations from a model and are thus free of such restrictions. We show the utility of the plug-and-play approach in the context of an investigation of measles transmission dynamics. Our novel methodology enables us to ask and answer questions that previous analyses have been unable to address. Specifically, we demonstrate that plug-and-play methods permit the development of a modelling and inference framework applicable to data from both large and small populations. We thereby obtain novel insights into the nature of heterogeneity in mixing and comment on the importance of including extra-demographic stochasticity as a means of dealing with environmental stochasticity and model misspecification. Our approach is readily applicable to many other epidemiological and ecological systems

    Bunching behaviour in housed dairy cows at higher ambient temperatures.

    Get PDF
    Bunching behavior in cattle may occur for several reasons including enabling social interactions, a response to stress or danger, or due to shared interest in resources such as feeding or watering areas. There is evidence in pasture grazed cattle that bunching may occur more frequently at higher ambient temperatures, possibly due to sharing of fly-load or to seek shade from the direct sun under heat stress conditions. Here we demonstrate how bunching behavior is associated with higher ambient temperatures in a barn-housed UK dairy herd. A real-time local positioning system (RTLS) was used, as part of a precision livestock farming (PLF) approach, to track the spatial position and activity of a commercial dairy herd (c100 cows) in a freestall barn continuously at high temporal resolution for 4 mo between August and November 2014. Bunching was determined using 4 different spatial measures determined on an hourly basis: herd full and core range size, mean herd inter-cow distance (ICD), and mean herd nearest neighbor distance (NND). For hourly mean ambient temperatures above 20°C, the herd showed higher bunching behavior with increasing ambient temperature (i.e., reduced full and core range size, ICD, and NND). Aggregated space-use intensity was found to positively correlate with localized variations in temperature across the barn (as measured by animal mounted sensors), but the level of correlation decreased at higher ambient barn temperatures. Bunching behavior may increase localized temperatures experienced by individuals and hence may be a maladaptive behavioral response in housed dairy cattle, which are known to suffer heat stress at higher temperatures. Our study is the first to use high-resolution positional data to provide evidence of associations between bunching behavior and higher ambient temperatures for a barn-housed dairy herd in a temperate region (UK). Further studies are needed to explore the exact mechanisms for this response to inform both welfare and production management

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2

    Get PDF
    TDP2 is a 5’-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II. TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for HTS-screening. We have gone on to determine crystal structures of these compounds bound to a ‘humanised’ form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2
    • 

    corecore