448 research outputs found
Recommended from our members
February 1967 Conference Issue
Massachusetts Turf and Lawn Grass CouncilBetter Turf Through Research and Educatio
A Community-Building Framework for Collaborative Research Coordination across the Education and Biology Research Disciplines
Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who are fostering improved and innovative approaches to biology education. When faculty members collaborate with the overarching goal of advancing undergraduate biology education, there is a need to optimize collaboration between participants in order to deeply integrate the knowledge across disciplinary boundaries. In this essay we propose a novel guiding framework for bringing colleagues together to advance knowledge and its integration across disciplines, the âFive âCâsâ of Collaboration: Commitment, Collegiality, Communication, Consensus, and Continuity.â This guiding framework for professional network practice is informed by both relevant literature and empirical evidence from community-building experience within the RCN-UBE Advancing Competencies in ExperimentationâBiology (ACE-Bio) Network. The framework is presented with practical examples to illustrate how it might be used to enhance collaboration between new and existing participants in the ACE-Bio Network as well as within other interdisciplinary networks
Large emissions from floodplain trees close the Amazon methane budget
Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (ÎŽ13C) of â66.2â±â6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1â±â1.8 to 21.2â±â2.5 teragrams of CH4 a year, in addition to the 20.5â±â5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a âtop-downâ regional estimate of CH4 emissions of 42.7â±â5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010â2013. We find close agreement between our âtop-downâ and combined âbottom-upâ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources
Plug-and-play inference for disease dynamics: measles in large and small populations as a case study
Statistical inference for mechanistic models of partially observed dynamic systems is an active area of research. Most existing inference methods place substantial restrictions upon the form of models that can be fitted and hence upon the nature of the scientific hypotheses that can be entertained and the data that can be used to evaluate them. In contrast, the so-called plug-and-play methods require only simulations from a model and are thus free of such restrictions. We show the utility of the plug-and-play approach in the context of an investigation of measles transmission dynamics. Our novel methodology enables us to ask and answer questions that previous analyses have been unable to address. Specifically, we demonstrate that plug-and-play methods permit the development of a modelling and inference framework applicable to data from both large and small populations. We thereby obtain novel insights into the nature of heterogeneity in mixing and comment on the importance of including extra-demographic stochasticity as a means of dealing with environmental stochasticity and model misspecification. Our approach is readily applicable to many other epidemiological and ecological systems
Configuring Balanced Scorecards for Measuring Health System Performance: Evidence from 5 Years' Evaluation in Afghanistan
Anbrasi Edward and colleagues report the results of a balanced scorecard performance system used to examine 29 key performance indicators over a 5-year period in Afghanistan, between 2004 and 2008
Bunching behaviour in housed dairy cows at higher ambient temperatures.
Bunching behavior in cattle may occur for several reasons including enabling social interactions, a response to stress or danger, or due to shared interest in resources such as feeding or watering areas. There is evidence in pasture grazed cattle that bunching may occur more frequently at higher ambient temperatures, possibly due to sharing of fly-load or to seek shade from the direct sun under heat stress conditions. Here we demonstrate how bunching behavior is associated with higher ambient temperatures in a barn-housed UK dairy herd. A real-time local positioning system (RTLS) was used, as part of a precision livestock farming (PLF) approach, to track the spatial position and activity of a commercial dairy herd (c100 cows) in a freestall barn continuously at high temporal resolution for 4 mo between August and November 2014. Bunching was determined using 4 different spatial measures determined on an hourly basis: herd full and core range size, mean herd inter-cow distance (ICD), and mean herd nearest neighbor distance (NND). For hourly mean ambient temperatures above 20°C, the herd showed higher bunching behavior with increasing ambient temperature (i.e., reduced full and core range size, ICD, and NND). Aggregated space-use intensity was found to positively correlate with localized variations in temperature across the barn (as measured by animal mounted sensors), but the level of correlation decreased at higher ambient barn temperatures. Bunching behavior may increase localized temperatures experienced by individuals and hence may be a maladaptive behavioral response in housed dairy cattle, which are known to suffer heat stress at higher temperatures. Our study is the first to use high-resolution positional data to provide evidence of associations between bunching behavior and higher ambient temperatures for a barn-housed dairy herd in a temperate region (UK). Further studies are needed to explore the exact mechanisms for this response to inform both welfare and production management
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
Recommended from our members
Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring
Largeâscale measurements of ozone (O3) and aerosol distributions were made from the NASA DCâ8 aircraft during the Transport and Chemical Evolution over the Pacific (TRACEâP) field experiment conducted in FebruaryâApril 2001. Remote measurements were made with an airborne lidar to provide O3 and multipleâwavelength aerosol backscatter profiles from near the surface to above the tropopause along the flight track. In situ measurements of O3, aerosols, and a wide range of trace gases were made onboard the DCâ8. Fiveâday backward trajectories were used in conjunction with the O3 and aerosol distributions on each flight to indicate the possible origin of observed air masses, such as from biomass burning regions, continental pollution, desert regions, and oceanic regions. Average latitudinal O3 and aerosol scattering ratio distributions were derived from all flights west of 150°E, and these distributions showed the average latitude and altitude dependence of different dynamical and chemical processes in determining the atmospheric composition over the western Pacific. TRACEâP (TP) showed an increase in the average latitudinal distributions of both O3 and aerosols compared to PEMâWest B (PWB), which was conducted in FebruaryâMarch 1994. O3, aerosol, and potential vorticity levels were used to identify nine air mass types and quantify their frequency of occurrence as a function of altitude. This paper discusses the characteristics of the different air mass types encountered during TP and compares them to PWB. These results confirmed that most of the O3 increase in TP was due to photochemistry. The average latitudinal eastward O3 flux in the western Pacific during TP was found to peak near 32°N with a total average O3 flux between 14 and 46°N of 5.2 Tg/day. The eastward total CO flux was calculated to be 2.2 TgâC/day with âŒ6% estimated from Asia. The Asian flux of CO2 and CH4 was estimated at 4.9 and 0.06 TgâC/day
- âŠ