155 research outputs found

    The Infra‐Red Absorption Spectrum of Propane

    Full text link
    Of the twenty‐seven internal degrees of freedom of propane, all nondegenerate, twenty‐two may appear as fundamental absorption bands. These bands fall into three symmetry classes, designated A1, B1 and B2, and distinguishable by their characteristic contours. Because of overlapping, however, it is impossible in many cases to determine their positions precisely. This is especially true in the regions of the C☒H valence and deformation frequencies. Some ten or twelve fundamental bands may be identified with confidence as well as a number of combinations. An A1 band at 870 cm—1 and a B2 band at 748 cm—1 have been partially resolved, the line spacing being about 1.47 cm—1 in agreement with predictions based upon electron diffraction measurements. The fine structure of the B1 bands has not been observed (the predicted spacing is 0.5 cm—1) but the interval between maxima of the P and R branches is approximately 26 cm—1 as expected. With 24 cm‐atmospheres of gas no bands were observed between 15μ and 35μ, although the symmetrical C☒C deformation might be expected to produce a band of appreciable intensity within these limits. This frequency has apparently been observed in Raman spectra at 375 cm—1.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70815/2/JCPSA6-9-7-487-1.pd

    Phase synchronization from noisy univariate signals

    Full text link
    We present methods for detecting phase synchronization of two unidirectionally coupled, self-sustained noisy oscillators from a signal of the driven oscillator alone. One method detects soft, another hard phase locking. Both are applied to the problem of detecting phase synchronization in von Karman vortex flow meters.Comment: 4 pages, 4 figure

    Long-term stable compressive elastocaloric cooling system with latent heat transfer

    Get PDF
    Elastocaloric cooling systems can evolve into an environmentally friendly alternative to compressor-based cooling systems. One of the main factors preventing its application is a poor long-term stability of the elastocaloric material. This especially applies to systems that work with tensile loads and which benefit from the large surface area for heat transfer. Exerting compressive instead of tensile loads on the material increases long-term stability-though at the expense of cooling power density. Here, we present a heat transfer concept for elastocaloric systems where heat is transferred by evaporation and condensation of a fluid. Enhanced heat transfer rates allow us to choose the sample geometry more freely and thereby realize a compression-based system showing unprecedented long-term stability of 107^{7} cycles and cooling power density of 6270 W kg1^{-1}

    Data driven optimal filtering for phase and frequency of noisy oscillations: application to vortex flowmetering

    Full text link
    A new method for extracting the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude (MIRVA) over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flowmeters. A novel measure for the strength of mode locking is proposed.Comment: 12 pages, 10 figure

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    Effects of habitat and land use on breeding season density of male Asian Houbara Chlamydotis macqueenii

    Get PDF
    Landscape-scale habitat and land-use influences on Asian Houbara Chlamydotis macqueenii (IUCN Vulnerable) remain unstudied, while estimating numbers of this cryptic, low-density, over-hunted species is challenging. In spring 2013, male houbara were recorded at 231 point counts, conducted twice, across a gradient of sheep density and shrub assemblages within 14,300 km² of the Kyzylkum Desert, Uzbekistan. Four sets of models related male abundance to: (1) vegetation structure (shrub height and substrate); (2) shrub assemblage; (3) shrub species composition (multidimensional scaling); (4) remote-sensed derived land-cover (GLOBCOVER, 4 variables). Each set also incorporated measures of landscape rugosity and sheep density. For each set, multi-model inference was applied to generalised linear mixed models of visit-specific counts that included important detectability covariates and point ID as a random effect. Vegetation structure received strongest support, followed by shrub species composition and shrub assemblage, with weakest support for the GLOBCOVER model set. Male houbara numbers were greater with lower mean shrub height, more gravel and flatter surfaces, but were unaffected by sheep density. Male density (mean 0.14 km-2, 95% CI, 0.12‒0.15) estimated by distance analysis differed substantially among shrub assemblages, being highest in vegetation dominated by Salsola rigida (0.22 [CI, 0.20‒0.25]), high in areas of S. arbuscula and Astragalus (0.14 [CI, 0.13‒0.16] and 0.15 [CI, 0.14‒0.17] respectively), lower (0.09 [CI, 0.08‒0.10]) in Artemisia and lowest (0.04 [CI, 0.04‒0.05]) in Calligonum. The study area was estimated to hold 1,824 males (CI: 1,645‒2,030). The spatial distribution of relative male houbara abundance, predicted from vegetation structure models, had the strongest correspondence with observed numbers in both model-calibration and the subsequent year’s data. We found no effect of pastoralism on male distribution but potential effects on nesting females are unknown. Density differences among shrub communities suggest extrapolation to estimate country- or range-wide population size must take account of vegetation composition

    Perennial snow and ice variations (2000–2008) in the Arctic circumpolar land area from satellite observations

    Get PDF
    Perennial snow and ice (PSI) extent is an important parameter of mountain environments with regard to its involvement in the hydrological cycle and the surface energy budget. We investigated interannual variations of PSI in nine mountain regions of interest (ROI) between 2000 and 2008. For that purpose, a novel MODIS data set processed at the Canada Centre for Remote Sensing at 250 m spatial resolution was utilized. The extent of PSI exhibited significant interannual variations, with coefficients of variation ranging from 5% to 81% depending on the ROI. A strong negative relationship was found between PSI and positive degree‐days (threshold 0°C) during the summer months in most ROIs, with linear correlation coefficients (r) being as low as r = −0.90. In the European Alps and Scandinavia, PSI extent was significantly correlated with annual net glacier mass balances, with r = 0.91 and r = 0.85, respectively, suggesting that MODIS‐derived PSI extent may be used as an indicator of net glacier mass balances. Validation of PSI extent in two land surface classifications for the years 2000 and 2005, GLC‐2000 and Globcover, revealed significant discrepancies of up to 129% for both classifications. With regard to the importance of such classifications for land surface parameterizations in climate and land surface process models, this is a potential source of error to be investigated in future studies. The results presented here provide an interesting insight into variations of PSI in several ROIs and are instrumental for our understanding of sensitive mountain regions in the context of global climate change assessment

    Evidence of intense chromosomal shuffling during conifer evolution

    Get PDF
    Although recent advances have been gained on genome evolution in angiosperm lineages, virtually nothing is known about karyotype evolution in the other group of seed plants, the gymnosperms. Here, we used high-density gene-based linkagemapping to compare the karyotype structure of two families of conifers (the most abundant group of gymnosperms) separated around 290 Ma Pinaceae and Cupressaceae.We propose for the first time amodel based on the fusion of 20 ancestral chromosomal blocks that may have shaped the modern karyotpes of Pinaceae (with n=12) and Cupressaceae (with n=11). The considerable difference in modern genome organization between these two lineages contrasts strongly with the remarkable level of synteny already reported within the Pinaceae. It also suggests a convergent evolutionary mechanism of chromosomal block shuffling that has shaped the genomes of the spermatophytes. ©The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution

    Sighted and visually impaired students’ perspectives of illustrations, diagrams and drawings in school science

    Get PDF
    In this paper we report on the views of students with and without visual impairments on the use of illustrations, diagrams and drawings (IDD) in science lessons. Method Our findings are based on data gathered through a brief questionnaire completed by a convenience sample of students prior to trialling new resource material. The questionnaire sought to understand the students’ views about using IDD in science lessons. The classes involved in the study included one class from a primary school, five classes from a secondary school and one class from a school for visually impaired students. Results Approximately 20% of the participants thought that the diagrams were boring and just under half (48%) of the total sample (regardless of whether they were sighted or visually impaired) did not think diagrams were easy to use. Only 14% of the participants felt that repeated encounters with the same diagrams made the diagrams easy to understand. Unlike sighted students who can ‘flit’ across diagrams, a visually impaired student may only see or touch a small part of the diagram at a time so for them ‘fliting’ could result in loss of orientation with the diagram. Conclusions Treating sighted and visually impaired pupils equally is different to treating them identically. Sighted students incidentally learn how to interpret visual information from a young age. Students who acquire sight loss need to learn the different rules associated with reading tactile diagrams, or large print and those who are congenitally blind do not have visual memories to rely upon
    corecore