6,703 research outputs found

    The effects of isometric work on heart rate, blood pressure, and net oxygen cost

    Get PDF
    Isometric exercise effects on heart rate, blood pressure, and net oxygen cos

    Enhanced Molecular Orientation Induced by Molecular Anti-Alignment

    Get PDF
    We explore the role of laser induced anti-alignment in enhancing molecular orientation. A field-free enhanced orientation via anti-alignment scheme is presented, which combines a linearly polarized femtosecond laser pulse with a half-cycle pulse. The laser pulse induces transient anti-alignment in the plane orthogonal to the field polarization, while the half-cycle pulse leads to the orientation. We identify two qualitatively different enhancement mechanisms depending on the pulse order, and optimize their effects using classical and quantum models both at zero and non-zero temperature

    Saturation Effects in Deep Inelastic Scattering at low Q2Q^2 and its Implications on Diffraction

    Full text link
    We present a model based on the concept of saturation for small Q2Q^2 and small xx. With only three parameters we achieve a good description of all Deep Inelastic Scattering data below x=0.01x=0.01. This includes a consistent treatment of charm and a successful extrapolation into the photoproduction regime. The same model leads to a roughly constant ratio of diffractive and inclusive cross section.Comment: 24 pages, 12 figures, Latex-fil

    Orienting coupled quantum rotors by ultrashort laser pulses

    Get PDF
    We point out that the non-adiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most efficiently enhances the orientation of quantum paired rotors.Comment: 7 pages, 5 figures, to appear in Phys. Rev.

    Saturation and geometric scaling in DIS at small x

    Full text link
    We present various aspects of the saturation model which provides good description of inclusive and diffractive DIS at small x. The model uses parton saturation ideas to take into account unitarity requirements. A new scaling predicted by the model in the small x domain is successfully confronted with the data.Comment: Presented at New Trends in HERA Physics 2001, Ringberg Castle, Tegernsee, Germany, 17-22 June 2001, minor corrections, some references adde

    Double logarithms, ln2(1/x)ln^2(1/x), and the NLO DGLAP evolution for the non-singlet component of the nucleon spin structure function, g1g_1

    Get PDF
    Theoretical predictions show that at low values of Bjorken xx the spin structure function, g1g_1 is influenced by large logarithmic corrections, ln2(1/x)ln^2(1/x), which may be predominant in this region. These corrections are also partially contained in the NLO part of the standard DGLAP evolution. Here we calculate the non-singlet component of the nucleon structure function, g1NS=g1pg1ng_1^{NS}=g_1^p-g_1^n, and its first moment, using a unified evolution equation. This equation incorporates the terms describing the NLO DGLAP evolution and the terms contributing to the ln2(1/x)ln^2(1/x) resummation. In order to avoid double counting in the overlapping regions of the phase-space, a unique way of including the NLO terms into the unified evolution equation is proposed. The scheme-independent results obtained from this unified evolution are compared to the NLO fit to experimental data, GRSV'2000. Analysis of the first moments of g1NSg_1^{NS} shows that the unified evolution including the ln2(1/x)ln^2(1/x) resummation goes beyond the NLO DGLAP analysis. Corrections generated by double logarithms at low xx influence the Q2Q^2-dependence of the first moments strongly.Comment: 13 pages, latex, 2 figures; Appendix adde

    Loading a Bose-Einstein Condensate onto an Optical Lattice: an Application of Optimal Control Theory to The Non Linear Schr\"odinger Equation

    Full text link
    Using a set of general methods developed by Krotov [A. I. Konnov and V. A. Krotov, Automation and Remote Control, {\bf 60}, 1427 (1999)], we extend the capabilities of Optimal Control Theory to the Nonlinear Schr\"odinger Equation (NLSE). The paper begins with a general review of the Krotov approach to optimization. Although the linearized version of the method is sufficient for the linear Schr\"odinger equation, the full flexibility of the general method is required for treatment of the nonlinear Schr\"odinger equation. Formal equations for the optimization of the NLSE, as well as a concrete algorithm are presented. As an illustration, we consider a Bose-Einstein condensate initially at rest in a harmonic trap. A phase develops across the BEC when an optical lattice potential is turned on. The goal is to counter this effect and keep the phase flat by adjusting the trap strength. The problem is formulated in the language of Optimal Control Theory (OCT) and solved using the above methodology. To our knowledge, this is the first rigorous application of OCT to the Nonlinear Schr\"odinger equation, a capability that is bound to have numerous other applications.Comment: 11 pages, 4 figures, A reference added, Some typos correcte

    A global analysis of inclusive diffractive cross sections at HERA

    Get PDF
    We describe the most recent data on the diffractive structure functions from the H1 and ZEUS Collaborations at HERA using four models. First, a Pomeron Structure Function (PSF) model, in which the Pomeron is considered as an object with parton distribution functions. Then, the Bartels Ellis Kowalski Wusthoff (BEKW) approach is discussed, assuming the simplest perturbative description of the Pomeron using a two-gluon ladder. A third approach, the Bialas Peschanski (BP) model, based on the dipole formalism is then described. Finally, we discuss the Golec-Biernat-W\"usthoff (GBW) saturation model which takes into account saturation effects. The best description of all avaible measurements can be achieved with either the PSF based model or the BEKW approach. In particular, the BEKW prediction allows to include the highest β\beta measurements, which are dominated by higher twists effects and provide an efficient and compact parametrisation of the diffractive cross section. The two other models also give a good description of cross section measurements at small xx with a small number of parameters. The comparison of all predictions allows us to identify interesting differences in the behaviour of the effective pomeron intercept and in the shape of the longitudinal component of the diffractive structure functions. In this last part, we present some features that can be discriminated by new experimental measurements, completing the HERA program.Comment: 32 pages, 18 figure

    Combined electrical transport and capacitance spectroscopy of a MoS2LiNbO3{\mathrm{MoS_2-LiNbO_3}} field effect transistor

    Get PDF
    We have measured both the current-voltage (ISDI_\mathrm{SD}-VGSV_\mathrm{GS}) and capacitance-voltage (CC-VGSV_\mathrm{GS}) characteristics of a MoS2LiNbO3\mathrm{MoS_2-LiNbO_3} field effect transistor. From the measured capacitance we calculate the electron surface density and show that its gate voltage dependence follows the theoretical prediction resulting from the two-dimensional free electron model. This model allows us to fit the measured ISDI_\mathrm{SD}-VGSV_\mathrm{GS} characteristics over the \emph{entire range} of VGSV_\mathrm{GS}. Combining this experimental result with the measured current-voltage characteristics, we determine the field effect mobility as a function of gate voltage. We show that for our device this improved combined approach yields significantly smaller values (more than a factor of 4) of the electron mobility than the conventional analysis of the current-voltage characteristics only.Comment: to appear in Applied Physics Letter

    Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling

    Full text link
    We compute, in N=4 super Yang-Mills theory, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well-defined procedure to perform the analogous computation at strong coupling via the AdS/CFT correspondence. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors.Comment: 21 pages, 10 figures, typos correcte
    corecore