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Orienting coupled quantum rotors by ultrashort laser pulses

Hiroyuki Shima and Tsuneyoshi Nakayama
Department of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

(Received 26 January 2004; published 7 July 2004)

We pointed out that the nonadiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is
remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of
quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent
the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most
efficiently enhance the orientation of quantum paired rotors.
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I. INTRODUCTION

Considerable attention has been paid to the ability of in-
tense laser fields to align or orient polar molecules; in such
fields, the molecules experience torque arising from the di-
polar interaction with electric fields[1]. One approach to
achieve adiabatic molecular alignment is to use a
nanosecond-pulse laser[2–4]. While adiabatic alignment dis-
appears after the pulse is turned off, ultrashort pulses(100 fs
or less) can excite rotational wave packets of quantum rotors,
thus yielding a noticeably aligned shape after the pulse is off
[5–11]. Furthermore, a specially designed sequence of pulses
is known to achieve an enhanced angular focusing in quan-
tum rotors[12,13]; this has been realized experimentally in
optical lattices[14]. These types of alignment, which differ
from the adiabatic, are important for manifold applications
requiring transient molecular alignment under field-free con-
ditions, such as the generation of laser pulses[15,16] and the
control of high harmonic generation as a source of coherent
radiation[17].

In most studies of the molecular alignment, dipolar inter-
action between polar molecules has been neglected. In this
case, the rotational dynamics of polar molecules can be sim-
ply analyzed by using an isolated kicked-rotor model[18].
The quantum kicked rotor and its classical analog have long
served as a paradigm for quantum and classical chaos. In
contrast, the quantum dynamics ofinteractingkicked rotors
has been less well studied so far, though intriguing phenom-
ena of interacting quantum rotors are expected to emerge.
Very recently, a study of the center-of-mass motion in two
coupled kicked rotors has revealed that the decoherence ef-
fect induced by the internal degree of freedom enhances the
quantum-classical correspondence in the dynamics of rotors
[19]. In addition, anomalous dielectric responses have been
pointed out in two coupled dipolar rotors[20]. These results
imply that coupled kicked rotors, even inonly two rotors,
exhibit peculiar behaviors different from those of isolated
kicked rotors.

In the present work, we theoretically investigate the quan-
tum dynamics of coupled(paired) kicked rotors subject to an
ultrashort laser pulse(d-function kick). We find that the di-
polar interaction between rotors remarkably enhances the
transient orientation of paired rotors produced by ad kick.
This enhancement of the orientation ofquantumrotors con-
trasts with the results with theclassicaltreatment for paired

rotors; in the latter case, the dipolar interaction inevitably
hinders the orientation of coupled rotors. Furthermore, we
demonstrate that the orientation of paired rotors can be fur-
ther enhanced by applying the accumulative squeezing
scheme proposed in Ref.[12]. Our findings enlighten the
study of transient orientation of interacting polar molecules.

This paper is organized as follows. Section II describes
the Hamiltonian of the paired-rotor system together with its
analytical solutions for eigenenergies and their eigenfunc-
tions. The time development of paired rotors forpost-kicked
times is given in this section. Section III analyzes the time
dependence of the orientation factor in both quantum and
classical paired rotors. The physical origin of the enhanced
orientation in quantum rotors is discussed on the basis of the
spatial profile of the probability density of paired-rotor wave
functions. Section IV gives the conclusion. The paper con-
tains two Appendices with the details of the calculations.

II. PAIRED-ROTOR SYSTEMS

A. The Hamiltonian

Suppose that two rotors carrying dipole momentsm are
arranged as shown in Fig. 1. For arrangement(a), both rotors

FIG. 1. Definitions of arrangements of two dipolar rotors:(a)
two dipoles rotate in an identical plane and(b) two rotors belong to
an identical rotation axis. In both cases, the rotors are separated by
R and interact via the dipolar interactionW12. The direction of the
electric fieldEstd is defined as shown.
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rotate in a plane, while in the case of(b), both rotors belong
to an identical rotation axis[21]. The Hamiltonian for the
system is given byH=H1+H2+W12, whereHi is the Hamil-
tonian for theith kicked rotor andW12 represents dipolar
interaction between rotors. The termHi can be written as

Hi =
Li

2

2I
+ Vsui,td, s1d

where Li is the angular momentum operator andI is the
moment of inertia of the rotor. When rotors are driven by a
linearly polarized field, we can set

Vsui,td = − mEstdcossuid, s2d

whereEstd is the field amplitude of short laser pulses. The
direction of the field is fixed as shown in Fig. 1, causing the
angular focusing of paired rotors atu1=u2=0. Assuming that
the rotational radius of rotors is sufficiently smaller than the
separationR between rotors, the dipolar interactionW12 is
expressed by

W12 =
1

4p«R3Fm1 · m2 − 3
sm1 ·Rdsm2 ·Rd

R2 G s3d

with the dielectric constant«. The vectorR connects two
rotational centers as denoted in Fig.1. For simplicity, we re-
write the term(3) as

W12 = ED ·Fsu1,u2d s4d

with the definition

ED =
m2

4p«R3 . s5d

The quantityED determines the magnitude of the dipolar
interaction between rotors, and plays a key role in the dy-
namics of coupled rotors, as we discuss later. The explicit
form of Fsu1,u2d is obtained straightforwardly from Fig.1.
The arrangement(a) gives the form

Fsu1,u2d = cosu1 cosu2 − 2 sinu1 sinu2, s6d

while, for arrangement(b), we have

Fsu1,u2d = cosu1 cosu2 + sinu1 sinu2

= cossu1 − u2d. s7d

B. Eigenenergies and their eigenfunctions

In the absence of the fieldEstd, eigenstates of paired ro-
tors are analytically obtained by transforming variables into
j=su1+u2d /2 andh=su1−u2d /2. Substituting them into Eqs.
(1) and (4), the HamiltonianH is separated as[20]:

H = Hj + Hh, s8d

Ha = −
EK

2

]2

]a2 + EDca cos 2sa + a0d; a = j,h. s9d

Here the quantityEK;"2/ s2Id represents the kinetic energy.
The parametersscj ,ch ,j0,h0d equal s3/2,1/2,0,p /2d for

arrangement(a) and (0, 1, 0, 0) for (b). The separability of
the HamiltonianH allows us to write the paired-rotor wave
function in the formCsj ,hd=wjsjdwhshd. Consequently, the
Schrödinger equation of paired rotorsHCsj ,hd=ECsj ,hd
can be decomposed into two independent eigenvalue equa-
tions expressed by

]2wa

]a2 + f«a − 2va cos 2sa + a0dgwa = 0; a = j,h, s10d

where «a=2Ea /EK and va=caED /EK. The solution of Eq.
(10) is given by the Mathieu function[22], whose explicit
forms are given in Appendix A. The eigenenergiesE of
paired rotors are thus expressed byE=s«x+«ydEK /2.

C. Time development of wave functions

Let us consider the time development of the wave func-
tion in paired-rotor systems after ad-function kick at t=t.
The wave functionCsu1,u2,t+d immediately after the kick is
related to that just before the kick,Csu1,u2,t−d, with a phase
determined by

Csu1,u2,t
+d = expHE

−`

`

−
i

"
fVsu1,td

+ Vsu2,tdgdtJCsu1,u2,t
−d. s11d

Substituting definition(2) into Eq. (11) and transforming
variablessu1,u2d→ sj ,hd, we obtain

Csj,h,t+d = o
n=−`

`

inJnS2P

"
cosjDexps− inhdCsj,h,t−d,

s12d

whereJnszd is the Bessel function ofnth order. The quantity

P =E
−`

`

mEstddt s13d

represents the strength of the pulse. In actual calculations for
Eq. (12), the summation ofn can be truncated at the finite
value ±nc, since the magnitude of the Bessel function
Jnfs2P/"dcosjg rapidly decays with increasingunu. The time
development of paired rotors forpost-kicked times is de-
scribed by

Csj,h,t+ + td = expF−
i

"
sHj + HhdtGCsj,h,t+d. s14d

The right-hand side of Eq.(14) can be analytically calculated
by expanding the functionCsj ,h ,t+d by the Mathieu func-
tion. The details of the calculation are presented in Appendix
B. In the following, we sett=0, and takeEK and " /EK as
units of energy and time, respectively. The initial state just
before the kick is fixed in the ground state.
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III. ORIENTATION OF PAIRED ROTORS

A. The orientation factor

The degree of orientation for paired rotors is characterized
by the orientation factorOstd=k2−cosu1−cosu2l, where the
angular brackets indicate to take the expectation value. The
factorOstd tends to be zero when the orientation of the rotors
in the field direction ofE is perfect. On the other hand, the
factor equals 2 when the amplitude of wave function
uCsu1,u2du is uniformly distributed in theu1-u2 space. The
strength of the dipolar interaction is characterized by the pa-
rameterG=ED /EK, i.e., the ratio of the interaction energyED
to the kinetic energyEK.

Figures 2(a) and 2(b) show the time dependence for the
orientation factorOstd for paired rotors fixing the kick
strengthP=10. Indices(a) and (b) in Fig. 2 correspond to
arrangement of rotors(a) and (b) in Fig. 1. In both(a) and
(b), the left figure plots the orientation factor for a long time
scale, 0ø tø7.0, while the right one does so for a short time
scale, 0ø tø0.15. We first discuss the two figures on the
left, where two values ofG are taken; the dotted lines display
the orientation factor forG=0, and the solid lines display that
for G=30.0. ForG=0, the time dependence forOstd for ar-
rangement(a) is identical to that for(b), because the two

rotors are no longer correlated via dipolar interaction. In this
case, the orientation factor yields a simple form[23] of

Ostd = 2 − 2J1s2P sin td s15d

with the lowest value ofOstcd=0.836 at the focal timet= tc
=9.2310−2.

For finite G’s, the orientation factor exhibits somewhat
complicated behavior different from that for isolated rotors.
The left two figures in Fig. 2 exhibit the difference of the
time dependence forOstd between the case ofG=30.0 and
that of G=0. For arrangement(a), the magnitude ofOstd for
G=30.0 exceeds that forG=0 at a timet<0 andt<2p. We
must notice that the lowest value ofOstd for G=30.0 located
at t= tc<0.1 is remarkably smaller than that forG=0. This
indicates that, in arrangement(a), the orientation of paired
rotors is enhanced by introducing strong dipolar interaction.
For arrangement(b), in contrast, the magnitude ofOstd for
G=30.0 does not exceed that forG=0 at anyt. In addition,
the lowest value ofOstd at t<0.1 seems to be invariant to the
change ofG, implying that the orientation of paired rotors in
arrangement(b) is not much affected by dipolar interaction.

In order to examine the effect of the interaction for the
lowest value ofOstd, we investigate in detail the behavior of
Ostd around the focal timetc with varying G. The calculated
results are shown in the right two images in Fig. 2, where the
value of G is increased fromG=0 (dotted line) up to G
=30.0 (solid line). In case(a), the increase inG monoto-
nously reduces the lowest value ofOstd. For G=30.0, the
factor eventually takes the lowest valueOstcd=0.156 at the
focal time tc=9.1310−2, which is much smaller than the
lowest value ofOstd for G=0. In case(b), on the other hand,
the time dependence forOstd hardly changes with varyingG.
We thus conclude that, as far as arrangement(a) is con-
cerned, the orientation of paired rotors can be efficiently en-
hanced by taking into account the dipolar interaction be-
tween rotors. This is one of main findings of the present
study. As we see in the next subsection, the enhanced orien-
tation inquantumrotors cannot be interpreted from theclas-
sical dynamics for paired rotors, indicating that the enhanced
orientation stems from a purely quantum effect.

B. Classical paired rotors

Before proceeding to a further investigation ofquantum
paired rotors, we consider the effect of dipolar interaction on
the orientation for classical paired rotors. For classical
kicked rotors, the termHi defined in(2) is rewritten as

Hi =
I

2
u̇i

2std + Vsui,td, s16d

while the interaction termWij is the same as that defined in
(4). Under field-free conditions, the equations of motion for
arrangement(a) are given by

Iü1 =
ED

2
f3 sinsu1 + u2d − sinsu1 − u2dg, s17d

FIG. 2. The orientation factorOstd in quantum paired rotors.
The figures(a) and (b) correspond to arrangements(a) and (b) in
Fig. 1. The quantity" /EK is taken as the unit of time. Left: The
time dependence forOstd within a long time scale. The parameterG
is varied asG=0 (dotted line) and G=30.0 (solid line) fixing the
kick strengthP=10. Right: The behavior ofOstd within a short time
scale.G is varied asG=0 (dotted line), G=1.0 (dashed-dotted), G
=3.0 (dashed-dotted-dotted), andG=30.0 (solid).
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I ü2 =
ED

2
f3 sinsu1 + u2d + sinsu1 − u2dg. s18d

By transforming the variables intoq1=u1+u2 and q2=u1
−u2, we obtain the following equations:

q̈1std = 6Gcl sinq1std, s19d

q̈2std = − 2Gcl sinq2std. s20d

Here we define the parameterGcl=ED / s2Id, showing the
strength of the dipolar interaction between classical rotors.
For arrangement(b), the same procedure yields

q̈1std = 0, s21d

q̈2std = 4Gcl sinqstd. s22d

Solutions of Eqs.(19)–(22) are expressed by Jacobi’s elliptic
functions. The orientation factor for classical paired rotors is
calculated by Ostd=2−2kcosq1stdcosq2stdlcl, where the
bracket k¯lcl means averaging over initial anglesuist=0d
[24].

Figure 3 shows the time dependence of the orientation
factor for the classical paired rotors. QuantitiesI /P and
sI /Pd2 are taken as the unit of time and the parameterGcl,
respectively. The value ofGcl is incrementally increased from
Gcl=0 (dotted line) up to Gcl=45 (solid line) as denoted in
the figure caption. We see that the increase inGcl inevitably
raises the minimal value ofOstd in both arrangements(a) and
(b). This leads to the conclusion that, inclassicalsystems,
the strong dipolar interaction interferes with the orientation
of paired rotors for both arrangements(a) and(b). The physi-
cal interpretation is given as follows. When two dipolar ro-
tors are assigned in arrangement(a), strong dipolar interac-
tion forces them to be parallel in the direction normal to the
field direction(see Fig. 1). Hence, the interaction hinders the

orientation of rotors in the field direction. For arrangement
(b), on the other hand, two dipolar rotors tend to be antipar-
allel to each other. This increases the minimal orientation
factor at the focal time. As a consequence, the dipolar inter-
action inclassicalsystems certainly prevents the rotors from
becoming oriented in the field direction defined in Fig. 1.

These facts naturally lead us to the following question:
Why is it that a strong dipolar interaction can enhance the
orientation of rotors inquantumsystems[see Fig. 2(a)]?
Comparing the behavior ofOstd shown in Fig. 3(a) with that
shown in the right of Fig. 2(a), we clearly see that the effect
of dipolar interaction on the orientation of paired rotors dif-
fers completely between classical and quantum systems. To
settle this point, we consider the time development of wave
functions in the paired-rotor system as follows.

C. Time development of wave functions for postkicked time

To understand the mechanism underlying the enhanced
orientation in quantum paired rotors, we examine the time
development of the probability densityuCsu1,u2,tdu2 in the
u1−u2 space. Figures 4(a) and 4(b) give contour plots of the
probability density for arrangement(a) with G=30.0. At t
=0 [Fig. 4(a)], the amplitude ofuCsu1,u2,tdu2 is spatially
confined around the two symmetric positionssu1,u2d
=sp /2 ,p /2d and s−p /2 ,−p /2d. When the kick is applied,
these two wave packets move toward the originu1=u2=0
while retaining their shapes, and finally collide head-on with
each other at the origin at a focal timet= tc. The resultant
angular focusing is demonstrated in Fig. 4(b), where the

FIG. 3. The orientation factorOstd in classical paired rotors.
Figures(a) and(b) correspond to arrangements(a) and(b) in Fig. 1.
The quantityI /P is taken as the unit of time. The parameterGcl

=ED / s2Id, determining the strength of dipolar interaction, is varied
asGcl=0,15,30,45from the bottom(solid line) to the top(dashed
line).

FIG. 4. Contour plots of the probability densityuCsu1,u2,tdu2
for arrangement(a) in Fig. 1. Top: The parameterG=30.0 with (a)
t=0, and(b) t= tc. Bottom:G=1.0 with (c) t=0, and(d) t= tc. White
regions indicate large amplitudes of the probability density.
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probability density ofuCsu1,u2du2 is well localized at around
the origin. This transient angular focusing at the origin en-
hances the orientation of quantum paired rotors.

We must note that angular focusing is enhanced only
whenG@1, namely, when the two rotors are strongly corre-
lated via dipolar interaction. If the dipolar interaction is suf-
ficiently weaksGø1d, the probability density for the initial
state is broadly distributed in theu1-u2 plane [Fig. 4(c)].
After a kick is applied, the amplitude of the wave function
spreads out over theu1-u2 space, followed by the formation
of a “rainbow structure”[12] at a focal timetc [Fig. 4(d)].
The degree of angular focusing for the rainbow structure is
obviously inferior to that for the case of strongly interacting
rotors [Fig. 4(b)]. In summary, two factors are essential for
enhancing the orientation of paired rotors:(i) The initial state
before the kick consists of two wave packets strongly con-
fined at symmetric positions with respect to the origin;(ii )
these wave packets move translationally toward the origin
after the kick. It should be mentioned that the translational
motion of two wave packets after ad pulse is not trivial. We
can analytically trace the motion of those wave packets by
calculating the expansion coefficientsDll8 appearing in Ap-
pendix B. Details of the calculations will be published else-
where[25].

The spatial profile of the initial eigenstate is determined
by the potential termW12. For arrangement(a), the potential
W12 as a function ofu1 andu2 gives two potential minima, at
su1,u2d=sp /2 ,p /2d and s−p /2 ,−p /2d, and a maximum at
su1,u2d=s0,0d [20]. The energy difference between the mini-
mum and the maximum is determined by the interaction en-
ergyED or, equivalently, the parameterG=ED /EK. WhenG is
much larger than unity, the energy difference becomes so
large that the initial eigenstate is strongly localized at the two
potential minima, as shown in Fig. 4(a). In addition, the am-
plitude of the wave function at the origin becomes almost
zero due to the large potential maximum. For postkicked
time, however, the kick creates a large number of excited
states, so that a superposition of them can produce a transient
angular focusing at the potential maximumsu1,u2d=s0,0d.
This leads to a minimal orientation factor at a focal time. On
the other hand, in theclassicallimit, the orientation of paired
rotors in the field directionsu1,u2d=s0,0d cannot occur when
the energy difference between the minimum and the maxi-
mum is larger than the kinetic energy of the rotors immedi-
ately after the kick. In other words, the strong dipolar inter-
action prevents the paired-rotor state from being located at
the originsu1,u2d=s0,0d. This follows that the enhanced ori-
entation of paired rotors is a purely quantum phenomenon.

D. The accumulative squeezing

The orientation of paired rotors can be further enhanced
by applying the “accumulative squeezing” scheme proposed
in Ref. [12] . This strategy is based on a specially designed
series of short laser pulses leading to a dramatic narrowing of
the rotor angular distribution. Figure 5 shows the orientation
factor Ostd of paired rotors kicked by a sequence of seven
pulses of the strengthP=10. The values ofG increase from 0
(solid) to 30.0 (dotted). For both arrangement, the strategy

works well to achieve the angular squeezing in paired rotors.
Moreover, in arrangement(a), a considerable reduction of
the factorOstd is seen for strongly interacting paired rotors
with G@1. This result provides a prospect for the scheme of
multiple-pulse angular squeezing in interacting quantum ro-
tors.

IV. CONCLUSION

In conclusion, we have theoretically investigated the
quantum dynamics of paired kicked rotors. The orientation
of paired rotors after thed-function kick is remarkably en-
hanced by introducing dipolar interaction between rotors,
when the rotors are deposited in an identical plane. The en-
hanced orientation is attributable mainly to two factors:(i)
The initial state before the kick consists of two wave packets
strongly confined at symmetric positions with respect to the
origin in the u1-u2 space;(ii ) These wave packets move
translationally toward the origin after the kick. We have also
demonstrated that the orientation of quantum paired rotors
can be further enhanced by applying a specially designed
sequence of pulses. Our findings will stimulate experimental
works aimed at the orientation of polar molecules correlated
via dipolar interaction.
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APPENDIX A: EXPANSION OF MATHIEU
FUNCTIONS

Four kinds of Mathieu functions, ce2n, se2n+1, ce2n+1, and
se2n+2, can be expressed in terms of the Fourier expansion as
follows [22]:

FIG. 5. The orientation factorOstd for paired rotors kicked with
a sequence of seven pulses of the strengthP=10. The values ofG
are varied asG=0, 1.0, 3.0, 5.0, 10.0, 30.0 from the top(the solid
line) to the bottom(the dotted one). The quantity" /EK is taken as
unit of time.
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ce2nsa,vad = o
m=0

`

A2m
s2ndsvadcos 2ma, sA1d

se2n+1sa,vad = o
m=0

`

B2m+1
s2n+1dsvadsins2m+ 1da, sA2d

ce2n+1sa,vad = o
m=0

`

A2m+1
s2n+1dsvadcoss2m+ 1da, sA3d

se2n+2sa,vad = o
m=0

`

A2m+2
s2n+2dsvadsins2m+ 2da. sA4d

By substituting Eqs.(A1)–(A4) into Eq.(10), we obtain suc-
cessive relations that determine the expansion coefficients.
For hA2m

s2ndj, as an example, we obtain the following relation:

«A0
s2nd − vA2

s2nd = 0, sA5d

s« − 4dA2
s2nd − vf2A0

s2nd − A4
s2ndg = 0, sA6d

s« − 4m2dA2m
s2nd − vfA2m−2

s2nd − A2m+2
s2nd g = 0 smù 2d. sA7d

The orthogonality of the Mathieu functions is described by

E
−p

p

dacelsva,adcel8sva,ad = pdll8, sA8d

E
−p

p

daselsva,adsel8sva,ad = pdll8, sA9d

E
−p

p

dacelsva,adsel8sva,ad = 0. sA10d

APPENDIX B: EXPLICIT FORM OF EQ. (14)

The explicit form of Eq.(14) can be obtained by expand-
ing the stateCsj ,h ,t+d in terms of the Mathieu functions.
Using these relations, the function(14) is expanded as

Csj,h,t+d = o
l=0

`

o
l8=0

`

Dll8f lsj,vjdgl8sh,vhd, sB1d

where each type of the Mathieu function is abbreviated as

f2lsj,vjd = celsj,vjd, sB2d

f2l+1sj,vjd = selsj,vjd; l = 0,1,2. . .. sB3d

The definition ofgl8sh ,yhd is the same as that off l. The
expansion coefficientshDll8j are calculated straightforwardly
as

Dll8 =E
−p

p

djE
−p

p

dhCsj,h,t+df lsj,vjdgl8sh,vhd. sB4d

Substituting Eq.(B1) into Eq. (14), we obtain the explicit
form of Csj ,h ,t++ td as

Csj,h,t+ + td = o
l=0

`

o
l8=0

`

expH−
i

"
fEj

sld + Eh
sl8dgtJ

3 Dll8f lsj,vjdgl8sh,vhd. sB5d

In actual calculations for Eq.(B5), the double summation
with respect tol and l8 can be truncated at a finite value,
because the expansion coefficientDll8 rapidly decay with in-
creasingl and l8.
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