23 research outputs found

    Non-Waste-Wachsschalungen: Neuartige PrÀzisions-Schalungen aus 100 % recycelbaren Industrie-Wachsen zur Herstellung von geometrisch komplexen Beton-Bauteilen

    Get PDF
    Die neuen 3D-Entwurfs-, Berechnungs- und Fertigungsverfahren in Kombination mit dem Werkstoff ultrahochfester Beton (UHPC) bieten das Potenzial, den Beton-Leichtbau zu revolutionieren [1]. Die Herausforderung bei der Herstellung von geometrisch komplexen und hochprĂ€zisen UHPC-Bauteilen liegt dabei im Schalungsbau. Da bisher keine verfĂŒgbaren abfallfreien und somit nachhaltigen alternativen Schalungsmaterialien bzw. -systeme identifiziert werden konnten, wurde der Forschungsansatz entwickelt, frei geformte Schalungen fĂŒr Betonbauteile unter Verwendung von CNC-gefrĂ€sten recycelbaren Industriewachsen zu verwenden. Die Erforschung dieses Ansatzes hin zu einer anwendbaren Non-Waste-Schalungstechnologie wurde in einem gemeinsamen Forschungsprojekt des Instituts fĂŒr Werkzeugmaschinen und Fertigungstechnik (IWF) und des Instituts fĂŒr Tragwerksentwurf (ITE) der TU Braunschweig durchgefĂŒhrt. Im Folgenden werden die wesentlichen Inhalte des Vorhabens, ausgehend von der Auswahl geeigneter Wachse, ĂŒber die Untersuchung der Zerspanbarkeit bis hin zur Betonierung und anschließenden Analyse der Schalungen und AbgĂŒsse, vorgestellt und diskutiert. Grundlegende Erkenntnisse wurden u. a. bereits 2016 in [2]–[5] veröffentlicht. Diese werden hier teilweise wiedergegeben und zudem mit zusĂ€tzlichen Informationen ergĂ€nzt. Die wesentlichen Erkenntnisse aus dem Forschungsvorhaben werden zusammengefasst. AusfĂŒhrliche Informationen zur Entwicklung der Non-Waste-Wachsschalungstechnologie finden sich in der 2019 veröffentlichten Dissertation von Jeldrik Mainka [6].The new 3D design, calculation and manufacturing methods in combination with ultra-high strength concrete (UHPC) off er the potential to revolutionise lightweight concrete construction [1]. The challenge in the production of geometrically complex and high-precision UHPC components lies in formwork construction. As no available waste-free and thus sustainable alternative formwork materials or systems have been identified so far, the research approach was developed to use freely shaped formwork for concrete components using CNC-milled recyclable industrial waxes. The research of this approach towards an applicable non-waste formwork technology was carried out in a joint research project of the Institute for Machine Tools and Production Engineering (IWF) and the Institute of Structural Design (ITE) of the Technical University of Braunschweig. In the following, the main contents of the project, starting with the selection of suitable waxes, the investigation of machinability up to the concreting and subsequent analysis of the formwork and castings are presented and discussed. Basic findings have already been published in 2016 in [2]–[5]. These are partly reproduced here and supplemented with additional information. The main findings of the research project are summarised. Detailed information on the development of non-waste wax formwork technology can be found in the dissertation by Jeldrik Mainka [6], published in 2019

    Non-Waste-Wachsschalungen: Neuartige PrÀzisions-Schalungen aus 100 % recycelbaren Industrie-Wachsen zur Herstellung von geometrisch komplexen Beton-Bauteilen

    No full text
    Die neuen 3D-Entwurfs-, Berechnungs- und Fertigungsverfahren in Kombination mit dem Werkstoff ultrahochfester Beton (UHPC) bieten das Potenzial, den Beton-Leichtbau zu revolutionieren [1]. Die Herausforderung bei der Herstellung von geometrisch komplexen und hochprĂ€zisen UHPC-Bauteilen liegt dabei im Schalungsbau. Da bisher keine verfĂŒgbaren abfallfreien und somit nachhaltigen alternativen Schalungsmaterialien bzw. -systeme identifiziert werden konnten, wurde der Forschungsansatz entwickelt, frei geformte Schalungen fĂŒr Betonbauteile unter Verwendung von CNC-gefrĂ€sten recycelbaren Industriewachsen zu verwenden. Die Erforschung dieses Ansatzes hin zu einer anwendbaren Non-Waste-Schalungstechnologie wurde in einem gemeinsamen Forschungsprojekt des Instituts fĂŒr Werkzeugmaschinen und Fertigungstechnik (IWF) und des Instituts fĂŒr Tragwerksentwurf (ITE) der TU Braunschweig durchgefĂŒhrt. Im Folgenden werden die wesentlichen Inhalte des Vorhabens, ausgehend von der Auswahl geeigneter Wachse, ĂŒber die Untersuchung der Zerspanbarkeit bis hin zur Betonierung und anschließenden Analyse der Schalungen und AbgĂŒsse, vorgestellt und diskutiert. Grundlegende Erkenntnisse wurden u. a. bereits 2016 in [2]–[5] veröffentlicht. Diese werden hier teilweise wiedergegeben und zudem mit zusĂ€tzlichen Informationen ergĂ€nzt. Die wesentlichen Erkenntnisse aus dem Forschungsvorhaben werden zusammengefasst. AusfĂŒhrliche Informationen zur Entwicklung der Non-Waste-Wachsschalungstechnologie finden sich in der 2019 veröffentlichten Dissertation von Jeldrik Mainka [6].The new 3D design, calculation and manufacturing methods in combination with ultra-high strength concrete (UHPC) off er the potential to revolutionise lightweight concrete construction [1]. The challenge in the production of geometrically complex and high-precision UHPC components lies in formwork construction. As no available waste-free and thus sustainable alternative formwork materials or systems have been identified so far, the research approach was developed to use freely shaped formwork for concrete components using CNC-milled recyclable industrial waxes. The research of this approach towards an applicable non-waste formwork technology was carried out in a joint research project of the Institute for Machine Tools and Production Engineering (IWF) and the Institute of Structural Design (ITE) of the Technical University of Braunschweig. In the following, the main contents of the project, starting with the selection of suitable waxes, the investigation of machinability up to the concreting and subsequent analysis of the formwork and castings are presented and discussed. Basic findings have already been published in 2016 in [2]–[5]. These are partly reproduced here and supplemented with additional information. The main findings of the research project are summarised. Detailed information on the development of non-waste wax formwork technology can be found in the dissertation by Jeldrik Mainka [6], published in 2019

    Retinoid treatment of skin diseases

    No full text

    Non-Waste-Wachsschalungen: Neuartige PrÀzisions-Schalungen aus 100 % recycelbaren Industrie-Wachsen zur Herstellung von geometrisch komplexen Beton-Bauteilen

    No full text
    Die neuen 3D-Entwurfs-, Berechnungs- und Fertigungsverfahren in Kombination mit dem Werkstoff ultrahochfester Beton (UHPC) bieten das Potenzial, den Beton-Leichtbau zu revolutionieren [1]. Die Herausforderung bei der Herstellung von geometrisch komplexen und hochprĂ€zisen UHPC-Bauteilen liegt dabei im Schalungsbau. Da bisher keine verfĂŒgbaren abfallfreien und somit nachhaltigen alternativen Schalungsmaterialien bzw. -systeme identifiziert werden konnten, wurde der Forschungsansatz entwickelt, frei geformte Schalungen fĂŒr Betonbauteile unter Verwendung von CNC-gefrĂ€sten recycelbaren Industriewachsen zu verwenden. Die Erforschung dieses Ansatzes hin zu einer anwendbaren Non-Waste-Schalungstechnologie wurde in einem gemeinsamen Forschungsprojekt des Instituts fĂŒr Werkzeugmaschinen und Fertigungstechnik (IWF) und des Instituts fĂŒr Tragwerksentwurf (ITE) der TU Braunschweig durchgefĂŒhrt. Im Folgenden werden die wesentlichen Inhalte des Vorhabens, ausgehend von der Auswahl geeigneter Wachse, ĂŒber die Untersuchung der Zerspanbarkeit bis hin zur Betonierung und anschließenden Analyse der Schalungen und AbgĂŒsse, vorgestellt und diskutiert. Grundlegende Erkenntnisse wurden u. a. bereits 2016 in [2]–[5] veröffentlicht. Diese werden hier teilweise wiedergegeben und zudem mit zusĂ€tzlichen Informationen ergĂ€nzt. Die wesentlichen Erkenntnisse aus dem Forschungsvorhaben werden zusammengefasst. AusfĂŒhrliche Informationen zur Entwicklung der Non-Waste-Wachsschalungstechnologie finden sich in der 2019 veröffentlichten Dissertation von Jeldrik Mainka [6].The new 3D design, calculation and manufacturing methods in combination with ultra-high strength concrete (UHPC) off er the potential to revolutionise lightweight concrete construction [1]. The challenge in the production of geometrically complex and high-precision UHPC components lies in formwork construction. As no available waste-free and thus sustainable alternative formwork materials or systems have been identified so far, the research approach was developed to use freely shaped formwork for concrete components using CNC-milled recyclable industrial waxes. The research of this approach towards an applicable non-waste formwork technology was carried out in a joint research project of the Institute for Machine Tools and Production Engineering (IWF) and the Institute of Structural Design (ITE) of the Technical University of Braunschweig. In the following, the main contents of the project, starting with the selection of suitable waxes, the investigation of machinability up to the concreting and subsequent analysis of the formwork and castings are presented and discussed. Basic findings have already been published in 2016 in [2]–[5]. These are partly reproduced here and supplemented with additional information. The main findings of the research project are summarised. Detailed information on the development of non-waste wax formwork technology can be found in the dissertation by Jeldrik Mainka [6], published in 2019

    Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE)

    Get PDF
    International audienceIn order to gain understanding on the verticalstructure of atmospheric water vapour above mountain lakesand to assess its link with the isotopic composition ofthe lake water and with small-scale dynamics (i.e. valleywinds, thermal convection above complex terrain), the L-WAIVE (Lacustrine-Water vApor Isotope inVentory Experi-ment) field campaign was conducted in the Annecy valley inthe French Alps during 10 d in June 2019. This field cam-paign was based on an original experimental synergy be-tween a suite of ground-based, boat-borne, and two ultra-light aircraft (ULA) measuring platforms implemented tocharacterize the thermodynamic and isotopic compositionabove and in the lake. A cavity ring-down spectrometer andan in-cloud liquid water collector were deployed aboard oneof the ULA to characterize the vertical distribution of themain stable water isotopes (H162 O, H182 O and H2H16O) bothin the air and in shallow cumulus clouds. The temporal evo-lution of the meteorological structures of the low tropospherewas derived from an airborne Rayleigh–Mie lidar (embarkedon a second ULA), a ground-based Raman lidar, and a windlidar. ULA flight patterns were repeated several times perday to capture the diurnal evolution as well as the variabil-ity associated with the different weather events encounteredduring the field campaign, which influenced the humidityfield, cloud conditions, and slope wind regimes in the valley.In parallel, throughout the campaign, liquid water samplesof rain, at the air–lake water interface, and at 2 m depth inthe lake were taken. A significant variability of the isotopiccomposition was observed along time, depending on weatherconditions, linked to the transition from the valley boundarylayer towards the free troposphere, the valley wind intensity,and the vertical thermal stability. Thus, significant gradientsof isotopic content have been revealed at the transition to thefree troposphere, at altitudes between 2.5 and 3.5 km. Theinfluence of the lake on the atmosphere isotopic compositionis difficult to isolate from other contributions, especially inthe presence of thermal instabilities and valley winds. Nev-ertheless, such an effect appears to be detectable in a layerof about 300 m thickness above the lake in light wind condi-tions. We also noted similar isotopic compositions in clouddrops and rainwate

    Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE)

    No full text
    In order to gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link with the isotopic composition of the lake water and with small-scale dynamics (i.e. valley winds, thermal convection above complex terrain), the L-WAIVE (Lacustrine-Water vApor Isotope inVentory Experiment) field campaign was conducted in the Annecy valley in the French Alps during 10 d in June 2019. This field campaign was based on an original experimental synergy between a suite of ground-based, boat-borne, and two ultra-light aircraft (ULA) measuring platforms implemented to characterize the thermodynamic and isotopic composition above and in the lake. A cavity ring-down spectrometer and an in-cloud liquid water collector were deployed aboard one of the ULA to characterize the vertical distribution of the main stable water isotopes (H162O, H182O and H2H16O) both in the air and in shallow cumulus clouds. The temporal evolution of the meteorological structures of the low troposphere was derived from an airborne Rayleigh–Mie lidar (embarked on a second ULA), a ground-based Raman lidar, and a wind lidar. ULA flight patterns were repeated several times per day to capture the diurnal evolution as well as the variability associated with the different weather events encountered during the field campaign, which influenced the humidity field, cloud conditions, and slope wind regimes in the valley. In parallel, throughout the campaign, liquid water samples of rain, at the air–lake water interface, and at 2 m depth in the lake were taken. A significant variability of the isotopic composition was observed along time, depending on weather conditions, linked to the transition from the valley boundary layer towards the free troposphere, the valley wind intensity, and the vertical thermal stability. Thus, significant gradients of isotopic content have been revealed at the transition to the free troposphere, at altitudes between 2.5 and 3.5 km. The influence of the lake on the atmosphere isotopic composition is difficult to isolate from other contributions, especially in the presence of thermal instabilities and valley winds. Nevertheless, such an effect appears to be detectable in a layer of about 300 m thickness above the lake in light wind conditions. We also noted similar isotopic compositions in cloud drops and rainwater
    corecore