16 research outputs found

    A database solution for the quantitative characterisation and comparison of deep-marine siliciclastic depositional systems

    Get PDF
    In sedimentological investigations, the ability to conduct comparative analyses between deep-marine depositional systems is hindered by the wide variety in methods of data collection, scales of observation, resolution, classification approaches and terminology. A relational database, the Deep-Marine Architecture Knowledge Store (DMAKS), has been developed to facilitate such analyses, through the integration of deep-marine sedimentological data collated to a common standard. DMAKS hosts data on siliciclastic deep-marine system boundary conditions, and on architectural and facies properties, including spatial, temporal and hierarchical relationships between units at multiple scales. DMAKS has been devised to include original and literature-derived data from studies of the modern sea-floor, and from ancient successions studied in the sub-surface and in outcrop. The database can be used as a research tool in both pure and applied science, allowing the quantitative characterisation of deep-marine systems. The ability to synthesise data from several case studies and to filter outputs on multiple parameters that describe the depositional systems and their controlling factors enables evaluation of the degree to which certain controls affect sedimentary architectures, thereby testing the validity of existing models. In applied contexts, DMAKS aids the selection and application of geological analogues to hydrocarbon reservoirs, and permits the development of predictive models of reservoir characteristics that account for geological uncertainty. To demonstrate the breadth of research applications, example outputs are presented on: (i) the characterisation of channel geometries, (ii) the hierarchical organisation of channelised and terminal deposits, (iii) temporal trends in the deposition of terminal lobes, (iv) scaling relationships between adjacent channel and levee architectural elements, (v) quantification of the likely occurrence of elements of different types as a function of the lateral distance away from an element of known type, (vi) proportions and transition statistics of facies in elements and beds, (vii) variability in net-to-gross ratios among element types

    Microplastics and their effects on soil function as a life-supporting System

    No full text
    Particles play important roles in terrestrial systems, where the natural soil environment provides a complex habitat in which the three-dimensional organization of mineral and organic matter is combined to a diverse array of water levels, microscopic life forms, and their metabolites. Soils are the foundation for most land-based life and terrestrial ecosystem services that benefit humans. When plastics arrive at the soil, their nonnatural structure, distinct chemical composition, and unique surface properties trigger a series of abrupt environmental changes in the soil. Indeed, the current evidence suggests changes in the fundamental physical, chemical, and microbiological properties of the soils. Consequently, water and other biogeochemical cycles, as well as plant performance and animal health, can be affected. In this chapter, we present the recent advances in understanding how microplastics can change elementary properties of soil systems, such as soil aggregation and structure. This is discussed jointly with the linked effects in the microbial activity and function. Then, we address the recent studies regarding the effects of micro- and nanoplastics on plants and animals. Finally, we elaborate the properties of the various types of microplastics, soil processes, and soil organisms that are probably influencing the observed effects. We conclude by highlighting that current scientific information is not enough to devise solid risk assessments on microplastics in soils and suggest research directions to fulfill this gap

    George Golding Kennedy correspondence.

    No full text
    Senders A, 1872-191

    George Golding Kennedy correspondence.

    No full text
    Senders L-M, 1866-191

    George Golding Kennedy correspondence.

    No full text
    Senders U-W, 1841-191
    corecore