244 research outputs found
Likelihood inference for exponential-trawl processes
Integer-valued trawl processes are a class of serially correlated, stationary
and infinitely divisible processes that Ole E. Barndorff-Nielsen has been
working on in recent years. In this Chapter, we provide the first analysis of
likelihood inference for trawl processes by focusing on the so-called
exponential-trawl process, which is also a continuous time hidden Markov
process with countable state space. The core ideas include prediction
decomposition, filtering and smoothing, complete-data analysis and EM
algorithm. These can be easily scaled up to adapt to more general trawl
processes but with increasing computation efforts.Comment: 29 pages, 6 figures, forthcoming in: "A Fascinating Journey through
Probability, Statistics and Applications: In Honour of Ole E.
Barndorff-Nielsen's 80th Birthday", Springer, New Yor
Modelling energy spot prices by volatility modulated Levy-driven Volterra processes
This paper introduces the class of volatility modulated L\'{e}vy-driven
Volterra (VMLV) processes and their important subclass of L\'{e}vy
semistationary (LSS) processes as a new framework for modelling energy spot
prices. The main modelling idea consists of four principles: First,
deseasonalised spot prices can be modelled directly in stationarity. Second,
stochastic volatility is regarded as a key factor for modelling energy spot
prices. Third, the model allows for the possibility of jumps and extreme spikes
and, lastly, it features great flexibility in terms of modelling the
autocorrelation structure and the Samuelson effect. We provide a detailed
analysis of the probabilistic properties of VMLV processes and show how they
can capture many stylised facts of energy markets. Further, we derive forward
prices based on our new spot price models and discuss option pricing. An
empirical example based on electricity spot prices from the European Energy
Exchange confirms the practical relevance of our new modelling framework.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ476 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Menunggu detik FFPVM6
Tinggal dua hari lagi Festival Filem dan Video Pelajar Malaysia Ke-6 (FFPVM6) bakal bermula. Sebagai panduan, berikut disenaraikan aktiviti-aktiviti menarik sepanjang festival tersebut
Vanishing largest Lyapunov exponent and Tsallis entropy
We present a geometric argument that explains why some systems having
vanishing largest Lyapunov exponent have underlying dynamics aspects of which
can be effectively described by the Tsallis entropy. We rely on a comparison of
the generalised additivity of the Tsallis entropy versus the ordinary
additivity of the BGS entropy. We translate this comparison in metric terms by
using an effective hyperbolic metric on the configuration/phase space for the
Tsallis entropy versus the Euclidean one in the case of the BGS entropy.
Solving the Jacobi equation for such hyperbolic metrics effectively sets the
largest Lyapunov exponent computed with respect to the corresponding Euclidean
metric to zero. This conclusion is in agreement with all currently known
results about systems that have a simple asymptotic behaviour and are described
by the Tsallis entropy.Comment: 15 pages, No figures. LaTex2e. Some overlap with arXiv:1104.4869
Additional references and clarifications in this version. To be published in
QScience Connec
Recommended from our members
Entropy and Efficiency of the ETF Market
We investigate the relative information efficiency of financial markets by measuring the entropy of the time series of high frequency data. Our tool to measure efficiency is the Shannon entropy, applied to 2-symbol and 3-symbol discretisations of the data. Analysing 1-min and 5-min price time series of 55 Exchange Traded Funds traded at the New York Stock Exchange, we develop a methodology to isolate residual inefficiencies from other sources of regularities, such as the intraday pattern, the volatility clustering and the microstructure effects. The first two are modelled as multiplicative factors, while the microstructure is modelled as an ARMA noise process. Following an analytical and empirical combined approach, we find a strong relationship between low entropy and high relative tick size and that volatility is responsible for the largest amount of regularity, averaging 62% of the total regularity against 18% of the intraday pattern regularity and 20% of the microstructure
The Asymptotic Inversion of Certain Cumulative Distribution Functions
The inversion of cumulative distribution functions is an important topic in statistics, probability theory and econometrics, in particular for computing percentage points of the distribution functions. The numerical inversion of these distributions needs accurate starting values,
and for the standard distributions powerful asymptotic formulas can be used to obtain these values. It is explained how a uniform asymptotic expansions of a standard form representing several well-known distribution functions can be used for the asymptotic inversion of these functions. As an example we consider the inversion of the hyperbolic cumulative distribution function
Discrete sine transform for multi-scale realized volatility measures
In this study we present a new realized volatility estimator based on a combination of the multi-scale regression and discrete sine transform (DST) approaches. Multi-scale estimators similar to that recently proposed by Zhang (2006) can, in fact, be constructed within a simple regression-based approach by exploiting the linear relation existing between the market microstructure bias and the realized volatilities computed at different frequencies. We show how such a powerful multi-scale regression approach can also be applied in the context of the Zhou [Nonlinear Modelling of High Frequency Financial Time Series, pp. 109–123, 1998] or DST orthogonalization of the observed tick-by-tick returns. Providing a natural orthonormal basis decomposition of observed returns, the DST permits the optimal disentanglement of the volatility signal of the underlying price process from the market microstructure noise. The robustness of the DST approach with respect to the more general dependent structure of the microstructure noise is also shown analytically. The combination of the multi-scale regression approach with DST gives a multi-scale DST realized volatility estimator similar in efficiency to the optimal Cramer–Rao bounds and robust against a wide class of noise contamination and model misspecification. Monte Carlo simulations based on realistic models for price dynamics and market microstructure effects show the superiority of DST estimators over alternative volatility proxies for a wide range of noise-to-signal ratios and different types of noise contamination. Empirical analysis based on six years of tick-by-tick data for the S&P 500 index future, FIB 30, and 30 year U.S. Treasury Bond future confirms the accuracy and robustness of DST estimators for different types of real data
Pricing Rainfall Based Futures Using Genetic Programming
Rainfall derivatives are in their infancy since starting trading on the Chicago Mercantile Exchange (CME) since 2011. Being a relatively new class of financial instruments there is no generally recognised pricing framework used within the literature. In this paper, we propose a novel framework for pricing contracts using Genetic Programming (GP). Our novel framework requires generating a risk-neutral density of our rainfall predictions generated by GP supported by Markov chain Monte Carlo and Esscher transform. Moreover, instead of having a single rainfall model for all contracts, we propose having a separate rainfall model for each contract. We compare our novel framework with and without our proposed contract-specific models for pricing against the pricing performance of the two most commonly used methods, namely Markov chain extended with rainfall prediction (MCRP), and burn analysis (BA) across contracts available on the CME. Our goal is twofold, (i) to show that by improving the predictive accuracy of the rainfall process, the accuracy of pricing also increases. (ii) contract-specific models can further improve the pricing accuracy. Results show that both of the above goals are met, as GP is capable of pricing rainfall futures contracts closer to the CME than MCRP and BA. This shows that our novel framework for using GP is successful, which is a significant step forward in pricing rainfall derivatives
Measuring and Modeling Risk Using High-Frequency Data
Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management. The recent availability of high-frequency data allows for refined methods in this field. In particular, more precise measures for the daily or lower frequency volatility can be obtained by summing over squared high-frequency returns. In turn, this so-called realized volatility can be used for more accurate model evaluation and description of the dynamic and distributional structure of volatility. Moreover, non-parametric measures of systematic risk are attainable, that can straightforwardly be used to model the commonly observed time-variation in the betas. The discussion of these new measures and methods is accompanied by an empirical illustration using high-frequency data of the IBM incorporation and of the DJIA index
Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control
Optical phase estimation is a vital measurement primitive that is used to
perform accurate measurements of various physical quantities like length,
velocity and displacements. The precision of such measurements can be largely
enhanced by the use of entangled or squeezed states of light as demonstrated in
a variety of different optical systems. Most of these accounts however deal
with the measurement of a very small shift of an already known phase, which is
in stark contrast to ab-initio phase estimation where the initial phase is
unknown. Here we report on the realization of a quantum enhanced and fully
deterministic phase estimation protocol based on real-time feedback control.
Using robust squeezed states of light combined with a real-time Bayesian
estimation feedback algorithm, we demonstrate deterministic phase estimation
with a precision beyond the quantum shot noise limit. The demonstrated protocol
opens up new opportunities for quantum microscopy, quantum metrology and
quantum information processing.Comment: 5 figure
- …