Abstract

Integer-valued trawl processes are a class of serially correlated, stationary and infinitely divisible processes that Ole E. Barndorff-Nielsen has been working on in recent years. In this Chapter, we provide the first analysis of likelihood inference for trawl processes by focusing on the so-called exponential-trawl process, which is also a continuous time hidden Markov process with countable state space. The core ideas include prediction decomposition, filtering and smoothing, complete-data analysis and EM algorithm. These can be easily scaled up to adapt to more general trawl processes but with increasing computation efforts.Comment: 29 pages, 6 figures, forthcoming in: "A Fascinating Journey through Probability, Statistics and Applications: In Honour of Ole E. Barndorff-Nielsen's 80th Birthday", Springer, New Yor

    Similar works

    Full text

    thumbnail-image

    Available Versions