812 research outputs found
Soil microbial communities in restored and unrestored coastal dune ecosystems in California
Most restoration projects involving invasive plant eradication tend to focus on plant removal with little consideration given to how these invasives change soil microbial communities. However, soil microorganisms can determine invasibility of habitats and, in turn, be altered by invasives once established, potentially inhibiting native plant establishment. We studied soil microbial communities in coastal dunes with varying invasion intensity and different restoration approaches (herbicide, mechanical excavation) at Point Reyes National Seashore. Overall, we found evidence of a strong link between bacterial and fungal soil communities and the presence of invasives and restoration approach. Heavily invaded sites were characterized by a lower abundance of putatively identified nitrifiers, fermentative bacteria, fungal parasites, and fungal dung saprotrophs and a higher abundance of cellulolytic bacteria and a class of arbuscular mycorrhizal fungi (Archaeosporomycetes). Changes in soil microbiota did not fully dissipate following removal of invasives using herbicide, with exception of reductions in cellulolytic bacteria and Archaeosporomycetes abundance. Mechanical restoration effectively removed both invasives and soil legacy effects by inverting or “flipping” rhizome-contaminated surface soils with soils from below and may have inadvertently induced other adverse effects on soils that impeded reestablishment of native dune plants. Land managers should consider additional measures to counteract lingering legacy effects and/or focus restoration efforts in areas where legacy effects are less pronounced
Edge excitations and Topological orders in rotating Bose gases
The edge excitations and related topological orders of correlated states of a
fast rotating Bose gas are studied. Using exact diagonalization of small
systems, we compute the energies and number of edge excitations, as well as the
boson occupancy near the edge for various states. The chiral Luttinger-liquid
theory of Wen is found to be a good description of the edges of the bosonic
Laughlin and other states identified as members of the principal Jain sequence
for bosons. However, we find that in a harmonic trap the edge of the state
identified as the Moore-Read (Pfaffian) state shows a number of anomalies. An
experimental way of detecting these correlated states is also discussed.Comment: Results extended to larger systems. Improved presentatio
Symmetry breaking in small rotating cloud of trapped ultracold Bose atoms
We study the signatures of rotational and phase symmetry breaking in small
rotating clouds of trapped ultracold Bose atoms by looking at rigorously
defined condensate wave function. Rotational symmetry breaking occurs in narrow
frequency windows, where the ground state of the system has degenerated with
respect to the total angular momentum, and it leads to a complex wave function
that exhibits vortices clearly seen as holes in the density, as well as
characteristic vorticity. Phase symmetry (or gauge symmetry) breaking, on the
other hand, is clearly manifested in the interference of two independent
rotating clouds.Comment: 4 pages, 2 figure
Identification of Botanical Biomarkers in Argentinean Diplotaxis Honeys: Flavonoids and Glucosinolates
To select and establish floral biomarkers of the botanical origin ofDiplotaxis tenuifoliahoneys, the flavonoids and glucosinolates present in bee-deposited nectar collected from hive combs (unripe honey) and mature honey from the same hives fron which the unripe honey samples were collected were analyzed by LC-UV-PAD-ESI-MSn. Glycosidic conjugates of the flavonols quercetin, kaempferol, and isorhamnetin were detected and characterized in unripe honey.D. tenuifoliamature honeys contained the aglycones kaempferol, quercetin, and isorhamnetin. The differences between the phenolic profiles of mature honey and freshly deposited honey could be due to hydrolytic enzymatic activities. Aliphatic and indole glucososinolates were analyzed in unripe and mature honeys, this being the first report of the detection and characterization of glucosinolates as honey constituents. Moreover, these honey samples contained different amounts of propolis-derived flavonoid aglycones (1765−3171 μg/100 g) and hydroxycinnamic acid derivatives (29−1514 μg/100 g). Propolis flavonoids were already present in the freshly deposited nectar, showing that the incorporation of these compounds to honey occurs at the early steps of honey production. The flavonoids quercetin, kaempferol, and isorhamnetin and the glucosinolates detected in the samples could be used as complementary biomarkers for the determination of the floral origin of ArgentineanDiplotaxishoneys
Ordered structures in rotating ultracold Bose gases
The characterization of small samples of cold bosonic atoms in rotating
microtraps has recently attracted increasing interest due to the possibility to
deal with a few number of particles per site in optical lattices. We analyze
the evolution of ground state structures as the rotational frequency
increases. Various kinds of ordered structures are observed. For atoms,
the standard scenario, valid for large sytems, is absent, and only gradually
recovered as increases. The vortex contribution to the total angular
momentum as a function of ceases to be an increasing function of
, as observed in experiments of Chevy {\it et al.} (Phys. Rev. Lett.
85, 2223 (2000)). Instead, for small , it exhibits a sequence of peaks
showing wide minima at the values of , where no vortices appear.Comment: 35 pages, 17 figure
Vortex nucleation in mesoscopic Bose superfluid and breaking of the parity symmetry
We analyze vortex nucleation in mezoscopic 2D Bose superfluid in a rotating
trap. We explicitly include a weakly anisotropic stirring potential, breaking
thus explicitly the axial symmetry. As the rotation frequency passes the
critical value the system undergoes an extra symmetry
change/breaking. Well below the ground state is properly described
by the mean field theory with an even condensate wave function. Well above
the MF solution works also well, but the order parameter becomes
odd. This phenomenon involves therefore a discrete parity symmetry breaking. In
the critical region the MF solutions exhibit dynamical instability. The true
many body state is a strongly correlated entangled state involving two
macroscopically occupied modes (eigenstates of the single particle density
operator). We characterize this state in various aspects: i) the eligibility
for adiabatic evolution; ii) its analytical approximation given by the
maximally entangled combination of two single modes; and finally iii) its
appearance in particle detection measurements.Comment: 14 pages, 27 figure
The effects of polyphenols and other bioactives on human health
Although deficiencies in polyphenol intake do not result in specific deficiency diseases, adequate intake of polyphenols could confer health benefits, especially with regard to chronic diseases. Tea, cocoa, fruits, and berries, as well as vegetables, are rich in polyphenols. Flavan-3-ols from cocoa have been found to be associated with a reduced risk of stroke, myocardial infarction, and diabetes, as well as improvements in lipids, endothelial-dependent blood flow and blood pressure, insulin resistance, and systemic inflammation. The flavonoid quercetin and the stilbene resveratrol have also been associated with cardiometabolic health. Although polyphenols have been associated with improved cerebral blood flow, evidence of an impact on cognition is more limited. The ability of dietary polyphenols to produce clinical effects may be due, at least in part, to a bi-directional relationship with the gut microbiota. Polyphenols can impact the composition of the gut microbiota (which are independently associated with health benefits), and gut bacteria metabolize polyphenols into bioactive compounds that produce clinical benefits. Another critical interaction is that of polyphenols with other phytochemicals, which could be relevant to interpreting the health parameter effects of polyphenols assayed as purified extracts, whole foods, or whole food extracts
(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis
We acknowledge Rita Ramos for support with qRT-PCR and Regina Menezes for the selection of primers; Antonio Temudo and Ana M. Nascimento for imaging support; The IMM-JLA Flow Cytometry Facility. We also thank Prof. Kuninori Suzuki (Tokyo Institute of Technology, Yokohama, Japan) for the 2xmCherry-ATG8 plasmid. TFO is supported by the DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain. This work was supported by Fundacao para a Ciencia e Tecnologia [iNOVA4Health: UID/Multi/04462/2013, SFRH/BD/73429/2010 and IMM/BI/78-2017 to DM, SFRH/BD/86584/2012 to IF, IF/01097/2013 to CNS, SFRH/BPD/35767/2007 and SFRH/BPD/101646/2014 to ST]. BacHBerry FP7 KBBE-2013-7 613793 to CNS, DM and CJ, Marie Curie International Reintegration Grant and an EMBO Installation Grant to TFO. TFO is supported by the DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain. The author(s) would like to acknowledge the STSM to AFA and networking support by the COST Action FA 1403 POSITIVe (Interindividual variation in responseto consumption of plant food bioactives and determinants involved), supported by COST (European Cooperation in Science and Technology).Parkinson's disease (PD) is an age-related neurodegenerative disease associated with the misfolding and aggregation of alpha-synuclein (aSyn). The molecular underpinnings of PD are still obscure, but nutrition may play an important role in the prevention, onset, and disease progression. Dietary (poly)phenols revert and prevent age-related cognitive decline and neurodegeneration in model systems. However, only limited attempts were made to evaluate the impact of digestion on the bioactivities of (poly)phenols and determine their mechanisms of action. This constitutes a challenge for the development of (poly)phenol-based nutritional therapies. Here, we subjected (poly)phenols from Arbutus unedo to in vitro digestion and tested the products in cell models of PD based on the cytotoxicity of aSyn. The (poly)phenol-digested metabolites from A. unedo leaves (LPDMs) effectively counteracted aSyn and H2O2 toxicity in yeast and human cells, improving viability by reducing aSyn aggregation and inducing its clearance. In addition, LPDMs modulated pathways associated with aSyn toxicity, such as oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial impairment, and SIR2 expression. Overall, LPDMs reduced aSyn toxicity, enhanced the efficiency of ER-associated protein degradation by the proteasome and autophagy, and reduced oxidative stress. In total, our study opens novel avenues for the exploitation of (poly)phenols in nutrition and health.publishersversionpublishe
Grape Resveratrol Increases Serum Adiponectin and Downregulates Inflammatory Genes in Peripheral Blood Mononuclear Cells: A Triple-Blind, Placebo-Controlled, One-Year Clinical Trial in Patients with Stable Coronary Artery Disease
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.[Purpose] The grape and wine polyphenol resveratrol exerts cardiovascular benefits but evidence from randomized human clinical trials is very limited. We investigated dose-depending effects of a resveratrol-containing grape supplement on stable patients with coronary artery disease (CAD) treated according to currently accepted guidelines for secondary prevention of cardiovascular disease.[Methods] In a triple-blind, randomized, placebo-controlled, one-year follow-up, 3-arm pilot clinical trial, 75 stable-CAD patients received 350 mg/day of placebo, resveratrol-containing grape extract (grape phenolics plus 8 mg resveratrol) or conventional grape extract lacking resveratrol during 6 months, and a double dose for the following 6 months. Changes in circulating inflammatory and fibrinolytic biomarkers were analyzed. Moreover, the transcriptional profiling of inflammatory genes in peripheral blood mononuclear cells (PBMCs) was explored using microarrays and functional gene expression analysis.[Results] After 1 year, in contrast to the placebo and conventional grape extract groups, the resveratrol-containing grape extract group showed an increase of the anti-inflammatory serum adiponectin (9.6 %, p = 0.01) and a decrease of the thrombogenic plasminogen activator inhibitor type 1 (PAI-1) (−18.6 %, p = 0.05). In addition, 6 key inflammation-related transcription factors were predicted to be significantly activated or inhibited, with 27 extracellular-space acting genes involved in inflammation, cell migration and T-cell interaction signals presenting downregulation (p < 0.05) in PBMCs. No adverse effects were detected in relation to the study products.[Conclusions] Chronic daily consumption of a resveratrol-containing grape nutraceutical could exert cardiovascular benefits in stable-CAD patients treated according to current evidence-based standards, by increasing serum adiponectin, preventing PAI-1 increase and inhibiting atherothrombotic signals in PBMCs.This study was supported by public funds: Projects CICYT-BFU2007-60576 and Consolider-Ingenio 2010 (CSD2007-00063, Fun-C-Food) from the Spanish Ministry of Science and Innovation (MICINN) and GERM-06-04486 (Fundación Séneca, Murcia, Spain). Dr. Tomé-Carneiro received a FPI grant from MICINN and Dr. Larrosa received a JAE-DOC contract from the Consejo Superior de Investigaciones Científicas (CSIC, Spain).Peer reviewe
Scissors mode of trapped dipolar gases
We study the scissors modes of dipolar boson and fermion gases trapped in a
spherically symmetric potential. We use the harmonic oscillator states to solve
the time-dependent Gross-Pitaevskii equation for bosons and the time-dependent
Hartree-Fock equation for fermions. It is pointed out that the scissors modes
of bosons and fermions can be of quite different nature
- …
