98 research outputs found

    Helium trapping in apatite damage: insights from (U-Th-Sm)/He dating of different granitoid lithologies

    Get PDF
    Apatite (U-Th-Sm)/He (AHe) thermochronometry is widely used to constrain thermal histories and rates of tectonic, exhumation, and erosion processes. However, data interpretation is often challenging, especially when the thermal history includes extended residence time in the He partial retention zone (HePRZ), with highly dispersed dates revealing the complexity of diffusion processes in natural systems. This study investigates chemical and physical factors that may have impacted He diffusion in apatite over long timescales in a context of protracted residence in the HePRZ. Nine samples from the Ploumanac'h pluton and North Tregor (Armorican Massif, France) were collected in granitoids, differing in petrography and chemisty. This area was chosen because these samples underwent a similar thermal history since ~300 Ma. We report new (U-Th Sm)/He dates, along with apatite fission-track (AFT) data, as well as lithological and chemical characterization. The results show dispersed (U-Th-Sm)/He dates, ranging from 87 ± 7 to 291 ± 23 Ma, whereas central AFT dates vary from 142 ± 6 to 199 ± 9 Ma. Current predictive models for He diffusion and fission-track annealing in apatite could not reproduce the two datasets together. However, this apparent discrepancy gives insight into the parameters influencing He diffusion at geological timescales. The data confirm that radiation damage enhances He trapping, as the AHe dates are positively correlated to effective uranium (eU) concentration. The He age dispersion for constant eU content cannot be explained just by variations in grain size or chemical composition. To explore the potential influence of recoil damage trapping behavior and annealing kinetics on AHe dates, we tested a new diffusion model from Gerin et al. (2017). Given the expected model of the thermal history provided by AFT inversion, we investigated the influence of the trapping energy on AHe dates. The AHe date variations can be explained only if the trapping energy evolves from one crystal to another, increasing with the amount of damage. For a given trapping energy, minor variations in the recoil-damage annealing rate can consistently explain most of the remaining dispersion of the AHe dates

    Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation

    Get PDF
    International audienceQuantifying long-term exhumation rates is a prerequisite for understanding the geodynamic evolution of orogens and their exogenic and endogenic driving forces. Here we reconstruct the exhumation history of the central Aar and Gotthard external crystalline massifs in the European Alps using apatite and zircon fission track and apatite (U-Th)/He data. Age-elevation relationships and time-temperature paths derived from thermal history modeling are interpreted to reflect nearly constant exhumation of ∼0.5 km/Ma since ∼14 Ma. A slightly accelerated rate (∼0.7 km/Ma) occurred from 16 to 14 Ma and again from 10 to 7 Ma. Faster exhumation between 16 and 14 Ma is most likely linked to indentation of the Adriatic wedge and related thrusting along the Alpine sole thrust, which, in turn, caused uplift and exhumation in the external crystalline massifs. The data suggest nearly steady, moderate exhumation rates since ∼14 Ma, regardless of major exogenic and endogenic forces such as a change to wetter climate conditions around 5 Ma or orogen-perpendicular extension initiated in Pliocene times. Recent uplift and denudation rates, interpreted to be the result of climate fluctuations and associated increase in erosional efficiency, are nearly twice this ∼0.5 km/Ma paleoexhumation rate

    Toward understanding the post-collisional evolution of an orogen influenced by convergence at adjacent plate margins; Late Cretaceous-Tertiary thermotectonic history of the Apuseni Mountains

    Get PDF
    The relationship between syn- to post-collisional orogenic shortening and stresses transmitted from other neighboring plate boundaries is important for understanding the kinematics of mountain belts, but has received little attention so far. The Apuseni Mountains are an example of an orogen in the interference zone between two other subduction systems located in the external Carpathians and Dinarides. This interference is demonstrated by the results of a combined thermochronological and structural field study that quantifies the post-collisional latest Cretaceous-Tertiary evolution. The exhumation history derived from apatite fission track and (U-Th)/He thermochronology indicates that the present-day topography of the Apuseni Mountains originates mainly from latest Cretaceous times, modified by two tectonic pulses during the Paleogene. The latter are suggested by cooling ages clustering around ∼45 Ma and ∼30 Ma and the associated shortening recorded along deep-seated fault systems. Paleogene exhumation pulses are similar in magnitude (∼3.5 km) and are coeval with the final collisional phases recorded in the Dinarides and with part of the Carpathian rotation around the Moesian promontory. These newly quantified Paleogene exhumation and shortening pulses contradict the general view of tectonic quiescence, subsidence and overall sedimentation for this time interval. The Miocene collapse of the Pannonian Basin did not induce significant regional exhumation along the western Apuseni flank, nor did the subsequent Carpathian collision. This is surprising in the overall context of Pannonian Basin formation and its subsequent inversion, in which the Apuseni Mountains were previously interpreted as being significantly uplifted in both deformation stages. Copyright 2011 by the American Geophysical Union

    Reply to comment on "Compositional and structural control of fission-track annealing in apatite"

    No full text
    International audienc

    Variation in apatite fission-track length measurement: implications for thermal history modelling

    No full text
    Predictive thermal history modelling using apatite fission-track (FT) data is dependent on an algorithm to describe the time and temperature dependency of FT annealing which, in turn, relies on the empirical determination of FT length as a measure of the annealing process. Assessment of variation in FT length measurement is poorly described, with few comparisons between analysts and little interlaboratory standardisation. Using apatites of various compositions containing induced tracks annealed to differing degrees, this study has assessed variation in horizontal confined track-length measurement for a variety of procedural conditions. Replicate analysis by a single observer is typically within 3% but increases inversely with track length. Comparison between observers on the same samples shows significant, generally nonsystematic variation between observers; for a complex length distribution variation is ∼12%. Sources of variation are identified as: (a) variation from track revelation, including etching, track-in-track (TINT) vs. track-in-cleavage (TINCLE) measurement and use of 252Cf irradiation to produce additional etching channels; (b) bias in measurement, including equipment, analytical procedures, and sample size; and (c) observer bias, principally differences in and consistency of personal technique. 5 M HNO3 is preferred to weaker etchants: although more anisotropic, tracks are better defined, permitting more rigorous measurement, while c-axis parallel sections (where 2π/4 π geometry is better defined) are more easily identified. For all but the longest length distributions, TINCLEs are significantly longer than TINTS, with few short TINCLEs at high angles; measurement of TINCLEs effectively masks the anisotropy of annealing. 252Cf irradiation is effective in increasing the number of TINTs sampled and measured. Variation between values measured for unirradiated and Cf-irradiated aliquots does not exceed that found for a single analyst, although a slight systematic shift to longer lengths for Cf-irradiated samples is seen. As reported by other workers, track-length distributions are anisotropic, anisotropy increasing with annealing level. Track angle exerts a major influence on measured length, summing affects from annealing and etching anisotropies with observer bias. Track angle should be accommodated within the annealing algorithm. It is recommended that similar track revelation, observation and measurement conditions are used for the analysis of field samples as are used in annealing experiments, and subsequently employed in numerical models to predict thermal history. A parallel argument can be advanced for using samples of similar composition. Further, we recommend that the FT community should seek as a matter of some urgency a programme of interlaboratory comparison of track-length measurement using standard apatite samples containing artificial length distributions typifying various levels of complexity. Such comparisons would provide a more rigorous baseline for thermal history prediction in geological case studies

    Modelling of the thermal history of the Carboniferous Lorraine Coal Basin: Consequences for coal bed methane

    No full text
    International audienceThis paper proposes a new scenario for the thermal history of the Carboniferous Lorraine Coal Basin following the tectonic model developed by Averbuch et al. (2012) and establishes some consequences for the coal bed methane (CBM) exploitation. Organic matter maturation data (Vitrinite Reflectance) determined on eleven boreholes in the eastern Lorraine have been used to characterize the Lorraine Coal Basin evolution. Paleozoic and Mesozoic overburials have been calculated using a thermal modelling software (Petromod). Results show that (1) Paleozoic erosion may be estimated at a maximum of 1200 m which represents a low amplitude event, (2) a little erosion occurred between Upper Paleozoic and Lower Mesozoic: paleotemperature offset is about 20 °C and VR data range from 0.7 (Westphalian D) to 0.5 (Lower Triassic), (3) Cretaceous cover overburial reaches a maximum of 300 m and decreases eastwards and (4) the variation of heat flows is in agreement with the compressive and extensive phases of Paleozoic and the extensive phase of Mesozoic. Consequences on the petroleum system are the following: organic matter is immature in the Jurassic and Triassic sedimentary rocks, mature (oil window) in the Permian, Stephanian and Westphalian C-D, highly mature (gas window) in Westphalian A-B-C and overmature in Namurian-Westphalian A. The high methane adsorption capacity of coal and the presence of natural fractures inside coal seams demonstrated by coal tomography allow a high CBM potential in this basin. The Lorraine Coal Basin is therefore a target for coal gas

    Mid-Cretaceous uplift and erosion on the northern margin of the Ligurian Tethys deduced from thermal history reconstruction

    No full text
    The paleogeography during Early Cretaceous of the northern margin of the Ligurian Tethys is poorly constrained because of deformation and erosion during Pyrenean and Alpine orogenic phases. The present-day limit between Lower Cretaceous sediments in the South–East basin, located at the northwestern margin of the Ligurian Tethys, and basement rocks is the consequence of a protracted erosion history. Lower Cretaceous sediments observed today in the basin, even close to the present-day outcropping border, are characteristic of pelagic environments. A larger extent of a Lower Cretaceous cover on the basement must then be considered. This study focuses on the western part of this margin (the Causses basin), in the South of the Massif Central (France), using several thermochronometers and geothermometers to decipher the former extent of the sedimentary cover. Apatite fission track thermochronology on basement rocks surrounding the Causses basin suggests that these rocks cooled from temperatures higher than 110°C during the mid-Cretaceous. Average fluid inclusion homogenisation temperatures between 94°C and 108°C are recorded in calcite veins from outcropping Toarcian and Aalenian shales. In the shales, Tmax values, temperature obtained by Rock–Eval pyrolysis of organic matter, are in agreement with these elevated temperatures. Different explanations for these relatively high temperatures, which cannot be explained by the present-day sedimentary serie in the basin, have been tested using a 1D thermal modelling procedure (Genex). For a 95±10-mW/m2 paleoflux, thick sedimentary deposits (2.5±0.3 km) including 1.3±0.3 km of Lower Cretaceous sediments cover the South of the Massif Central; these formations have been subsequently eroded from mid-Cretaceous time onwards. This study confirms that the South of the Massif Central was a site of marine sedimentation during the Early Cretaceous where a thick sedimentary sequence was once deposited
    corecore