93 research outputs found

    Breeding state and season affect interspecific interaction types: indirect resource competition and direct interference

    Get PDF
    Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either–or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual’s reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species

    Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra)

    Get PDF
    Caspers B, Junge C, Weitere M, Steinfartz S. Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra). Frontiers in Zoology. 2009;6(1):13.Background: Although some mechanisms of habitat adaptation of conspecific populations have been recently elucidated, the evolution of female preference has rarely been addressed as a force driving habitat adaptation in natural settings. Habitat adaptation of fire salamanders (Salamandra salamandra), as found in Middle Europe (Germany), can be framed in an explicit phylogeographic framework that allows for the evolution of habitat adaptation between distinct populations to be traced. Typically, females of S. salamandra only deposit their larvae in small permanent streams. However, some populations of the western post-glacial recolonization lineage use small temporary ponds as larval habitats. Pond larvae display several habitat-specific adaptations that are absent in stream-adapted larvae. We conducted mate preference tests with females from three distinct German populations in order to determine the influence of habitat adaptation versus neutral genetic distance on female mate choice. Two populations that we tested belong to the western post-glacial recolonization group, but are adapted to either stream or pond habitats. The third population is adapted to streams but represents the eastern recolonization lineage. Results: Despite large genetic distances with F-ST values around 0.5, the stream-adapted females preferred males from the same habitat type regardless of genetic distance. Conversely, pond-adapted females did not prefer males from their own population when compared to stream-adapted individuals of either lineage. Conclusion: A comparative analysis of our data showed that habitat adaptation rather than neutral genetic distance correlates with female preference in these salamanders, and that habitat-dependent female preference of a specific pond-reproducing population may have been lost during adaptation to the novel environmental conditions of ponds

    Chemical analysis reveals sex differences in the preen gland secretion of breeding Blue Tits

    Get PDF
    Caspers B, Marfull R, Dannenhaus T, Komdeur J, Korsten P. Chemical analysis reveals sex differences in the preen gland secretion of breeding Blue Tits. Journal of Ornithology. 2021;163(1):191–198.**Abstract** Acoustic and visual signals are well known to play important roles in social communication in birds. Growing evidence suggests that many bird species, including species of songbirds, additionally have a well-developed sense of smell. However, we are still at the beginning of understanding the potential importance of chemical communication in the social lives of birds, for example in mate choice. The secretion of the preen gland may be an important contributor to the chemical phenotype of birds. Here, we report on a first characterisation of the chemical composition of the preen gland secretion of the Blue Tit (Cyanistes caeruleus), a common songbird which is an often used model species in animal behaviour and ecology, in particular also in studies of sexual selection and (extra-pair) mate choice. We found sex differences in the composition of the preen gland secretion in breeding Blue Tits. Females further tended to have a larger number of putative compounds in their secretions compared to males. We briefly discuss the possible implications of these findings and speculate that the chemical composition of the preen gland secretion may be a sexually selected trait in Blue Tits. Our preliminary findings warrant follow-up research into the patterns of within- and among individual variation in the chemical composition of the preen gland secretion as well as the identification of the main chemical compounds involved.**Zusammenfassung**Chemische Analyse zeigt Geschlechtsunterschiede im Bürzeldrüsensekret brütender BlaumeisenSingvögel sind vor allem für ihren Gesang und ihre Gefiedermerkmale, die bei der sozialen Kommunikation eine bedeutende Rolle spielen, bekannt. Immer mehr Hinweise deuten aber darauf hin, dass viele Vogelarten, darunter auch Singvogelarten, zusätzlich einen gut entwickelten Geruchssinn haben. Welche Bedeutung die geruchliche Kommunikation im sozialen Leben der Vögel, zum Beispiel bei der Partnerwahl, spielt ist allerdings weitgehend noch unbekannt. Das Bürzeldrüsensekret könnte in diesem Zusammenhang einen wichtigen Beitrag zum chemischen Phänotyp der Vögel leisten. In unserer Studie haben wir uns die chemische Zusammensetzung des Bürzeldrüsensekrets der Blaumeise (Cyanistes caeruleus) in der Brutzeit angeschaut. Blaumeisen sind eine viel genutzte Modellart in der Verhaltensforschung und Verhaltensökologie, insbesondere auch in Studien zur sexuellen Selektion und (außerpaarigen) Partnerwahl. Anhand von chemischen Analysen mittels Gas-Chromatographie fanden wir heraus, dass es bei brütenden Blaumeisen einen Geschlechtsunterschied in der Zusammensetzung des Bürzeldrüsensekrets gibt. Weibchen neigen außerdem dazu, eine größere Anzahl von vermeintlichen Substanzen in ihren Sekreten zu haben als Männchen. Wir diskutieren hier kurz die möglichen Implikationen dieser Ergebnisse und spekulieren, dass die chemische Zusammensetzung des Bürzeldrüsensekrets ein sexuell selektiertes Merkmal bei Blaumeisen sein könnte. Unsere vorläufigen Ergebnisse rechtfertigen Folgeuntersuchungen, in denen die Identifikation der wichtigsten chemischen Verbindungen des Bürzeldrüsensekrets und die Variation innerhalb und zwischen Individuen in der chemischen Zusammensetzung des Drüsensekrets im Fokus stehen

    Chemical fingerprints encode mother-offspring similarity, colony membership, relatedness and genetic quality in fur seals

    Get PDF
    Chemical communication underpins virtually all aspects of vertebrate social life, yet remains poorly understood because of its highly complex mechanistic basis. We therefore used chemical fingerprinting of skin swabs and genetic analysis to explore the chemical cues that may underlie mother–offspring recognition in colonially breeding Antarctic fur seals. By sampling mother–offspring pairs from two different colonies, using a variety of statistical approaches and genotyping a large panel of microsatellite loci, we show that colony membership, mother–offspring similarity, heterozygosity, and genetic relatedness are all chemically encoded. Moreover, chemical similarity between mothers and offspring reflects a combination of genetic and environmental influences, the former partly encoded by substances resembling known pheromones. Our findings reveal the diversity of information contained within chemical fingerprints and have implications for understanding mother–offspring communication, kin recognition, and mate choice

    Begging blue tit nestlings discriminate between the odour of familiar and unfamiliar conspecifics

    Get PDF
    1. Offspring often solicit, and compete for, limited parental care by elaborate begging behaviour. Kin selection theory predicts that competing offspring should modify the intensity of their begging depending on the degree of relatedness to their nest-or litter-mates. 2. Empirical evidence in birds, which are a key model in the study of parent-offspring interactions, indeed indicates that a lower level of relatedness between offspring in the nest correlates with more intense begging (i.e. more 'selfish' behaviour). This implies that competing nestlings can recognize kin, but the mechanism underlying such discrimination is unclear. Birds have long been thought to mainly rely on visual and auditory cues in their social communication, but there is now growing evidence for the importance of olfactory cues too. 3. To assess the potential importance of olfactory cues in modulating nestling begging behaviour, we experimentally tested in a free-living bird, the blue tit Cyanistes caeruleus, if nestlings discriminate and adjust their begging behaviour depending on their familiarity with a conspecific nestling odour stimulus. 4. We found that individuals responded with longer and more intense begging bouts to an unfamiliar compared with a familiar odour stimulus. 5. Our findings provide first evidence for a role of olfaction in modulating offspring begging behaviour in a wild bird population. Although our experiment cannot differentiate between the effects of familiarity and relatedness, it raises the interesting possibility that blue tit nestlings may also discriminate between odours of close kin and less related individuals, and adjust their begging behaviour accordingly. This hypothesis requires further testing

    Timing matters: age-dependent impacts of the social environment and host selection on the avian gut microbiota

    Get PDF
    Background The establishment of the gut microbiota in early life is a critical process that influences the development and fitness of vertebrates. However, the relative influence of transmission from the early social environment and host selection throughout host ontogeny remains understudied, particularly in avian species. We conducted conspecific and heterospecific cross-fostering experiments in zebra finches (Taeniopygia guttata) and Bengalese finches (Lonchura striata domestica) under controlled conditions and repeatedly sampled the faecal microbiota of these birds over the first 3 months of life. We thus documented the development of the gut microbiota and characterised the relative impacts of the early social environment and host selection due to species-specific characteristics and individual genetic backgrounds across ontogeny by using 16S ribosomal RNA gene sequencing. Results The taxonomic composition and community structure of the gut microbiota changed across ontogenetic stages; juvenile zebra finches exhibited higher alpha diversity than adults at the post-breeding stage. Furthermore, in early development, the microbial communities of juveniles raised by conspecific and heterospecific foster parents resembled those of their foster family, emphasising the importance of the social environment. In later stages, the social environment continued to influence the gut microbiota, but host selection increased in importance. Conclusions We provided a baseline description of the developmental succession of gut microbiota in zebra finches and Bengalese finches, which is a necessary first step for understanding the impact of the early gut microbiota on host fitness. Furthermore, for the first time in avian species, we showed that the relative strengths of the two forces that shape the establishment and maintenance of the gut microbiota (i.e. host selection and dispersal from the social environment) change during development, with host selection increasing in importance. This finding should be considered when experimentally manipulating the early-life gut microbiota. Our findings also provide new insights into the mechanisms of host selection

    Olfactory sex preferences in six Estrildid Finch species

    Get PDF
    Avian courtship behaviour is essential to attract potential mating partners. Courtship behaviours can involve displays of different sensory modes. Sex discrimination is a crucial step and in many bird species, sexes differ in acoustic and visual traits, allowing sex discrimination. It has been shown only recently that in some species of Estrildid Finches, chemical cues are involved in social communication. Here, we investigated whether olfaction also plays a role in sex discrimination in Estrildid Finches. Investigating olfactory sex preferences as an indicator behaviour in six different Estrildid Finch species, we aimed to understand whether sex- and/or species-specific differences in olfactory preferences exists and whether olfactory sex preferences correspond to species-specific differences in sex-specific acoustic and visual displays, e.g., singing, plumage dimorphisms and courtship dance. Olfactory sex preferences were tested in a Y-Maze test. We found differences in scent preferences among the different species of Estrildid Finches. We discussed the behavioural pattern with respect to other species-specific traits. And their potential implications in a broader mate choice context

    Scents of Adolescence: The Maturation of the Olfactory Phenotype in a Free-Ranging Mammal

    Get PDF
    Olfaction is an important sensory modality for mate recognition in many mammal species. Odorants provide information about the health status, genotype, dominance status and/or reproductive status. How and when odor profiles change during sexual maturation is, however often unclear, particularly in free-ranging mammals. Here, we investigated whether the wing sac odorant of male greater sac-winged bats (Saccopteryx bilineata, Emballonuridae) differs between young and adults, and thus offers information about sexual maturity to potential mating partners. Using gas chromatography – mass spectrometry, we found differences in the odorants of young and adult males prior and during, but not after the mating period. The wing sac odorant of adult males consists of several substances, such as Pyrocoll, 2,6,10-trimethyl-3-oxo-6,10-dodecadienolide, and a so far unidentified substance; all being absent in the odor profiles of juveniles prior to the mating season. During the mating season, these substances are present in most of the juvenile odorants, but still at lower quantities compared to the wing sac odorants of adults. These results suggest that the wing sac odorant of males encodes information about age and/or sexual maturity. Although female S. bilineata start to reproduce at the age of half a year, most males of the same age postpone the sexual maturation of their olfactory phenotype until after the first mating season

    Variation in Reproductive Success Across Captive Populations: Methodological Differences, Potential Biases and Opportunities

    Get PDF
    Our understanding of fundamental organismal biology has been disproportionately influenced by studies of a relatively small number of model\u27 species extensively studied in captivity. Laboratory populations of model species are commonly subject to a number of forms of past and current selection that may affect experimental outcomes. Here, we examine these processes and their outcomes in one of the most widely used vertebrate species in the laboratory - the zebra finch (Taeniopygia guttata). This important model species is used for research across a broad range of fields, partly due to the ease with which it can be bred in captivity. However despite this perceived amenability, we demonstrate extensive variation in the success with which different laboratories and studies bred their subjects, and overall only 64% of all females that were given the opportunity, bred successfully in the laboratory. We identify and review several environmental, husbandry, life-history and behavioural factors that potentially contribute to this variation. The variation in reproductive success across individuals could lead to biases in experimental outcomes and drive some of the heterogeneity in research outcomes across studies. The zebra finch remains an excellent captive animal system and our aim is to sharpen the insight that future studies of this species can provide, both to our understanding of this species and also with respect to the reproduction of captive animals more widely. We hope to improve systematic reporting methods and that further investigation of the issues we raise will lead both to advances in our fundamental understanding of avian reproduction as well as to improvements in future welfare and experimental efficiency
    corecore