230 research outputs found

    Asymptotic and measured large frequency separations

    Full text link
    With the space-borne missions CoRoT and Kepler, a large amount of asteroseismic data is now available. So-called global oscillation parameters are inferred to characterize the large sets of stars, to perform ensemble asteroseismology, and to derive scaling relations. The mean large separation is such a key parameter. It is therefore crucial to measure it with the highest accuracy. As the conditions of measurement of the large separation do not coincide with its theoretical definition, we revisit the asymptotic expressions used for analysing the observed oscillation spectra. Then, we examine the consequence of the difference between the observed and asymptotic values of the mean large separation. The analysis is focused on radial modes. We use series of radial-mode frequencies to compare the asymptotic and observational values of the large separation. We propose a simple formulation to correct the observed value of the large separation and then derive its asymptotic counterpart. We prove that, apart from glitches due to stellar structure discontinuities, the asymptotic expansion is valid from main-sequence stars to red giants. Our model shows that the asymptotic offset is close to 1/4, as in the theoretical development. High-quality solar-like oscillation spectra derived from precise photometric measurements are definitely better described with the second-order asymptotic expansion. The second-order term is responsible for the curvature observed in the \'echelle diagrams used for analysing the oscillation spectra and this curvature is responsible for the difference between the observed and asymptotic values of the large separation. Taking it into account yields a revision of the scaling relations providing more accurate asteroseismic estimates of the stellar mass and radius.Comment: accepted in A&

    Rotational Splittings with CoRoT, Expected Number of Detections and Measurement Accuracy

    Full text link
    One of the main goal of the CoRoT experiment is to determine the internal rotation of stars. A seismic measure of rotation requires the detection and an accurate measurement of rotational splittings. Our ability to achieve this goal with CoRoT observations depends on the properties of the target star (in short: spectral type and distance) and will be discussed

    Oscillating red giants in the CoRoT exo-field: Asteroseismic mass and radius determination

    Get PDF
    Context. Observations and analysis of solar-type oscillations in red-giant stars is an emerging aspect of asteroseismic analysis with a number of open questions yet to be explored. Although stochastic oscillations have previously been detected in red giants from both radial velocity and photometric measurements, those data were either too short or had sampling that was not complete enough to perform a detailed data analysis of the variability. The quality and quantity of photometric data as provided by the CoRoT satellite is necessary to provide a breakthrough in observing p-mode oscillations in red giants. We have analyzed continuous photometric time-series of about 11 400 relatively faint stars obtained in the exofield of CoRoT during the first 150 days long-run campaign from May to October 2007. We find several hundred stars showing a clear power excess in a frequency and amplitude range expected for red-giant pulsators. In this paper we present first results on a sub-sample of these stars. Aims. Knowing reliable fundamental parameters like mass and radius is essential for detailed asteroseismic studies of red-giant stars. As the CoRoT exofield targets are relatively faint (11-16 mag) there are no (or only weak) constraints on the star's location in the H-R diagram. We therefore aim to extract information about such fundamental parameters solely from the available time series. Methods. We model the convective background noise and the power excess hump due to pulsation with a global model fit and deduce reliable estimates for the stellar mass and radius from scaling relations for the frequency of maximum oscillation power and the characteristic frequency separation.Comment: 10 pages, 7 figures, accepted for publication in A&

    The universal red-giant oscillation pattern; an automated determination with CoRoT data

    Full text link
    The CoRoT and Kepler satellites have provided thousands of red-giant oscillation spectra. The analysis of these spectra requires efficient methods for identifying all eigenmode parameters. The assumption of new scaling laws allows us to construct a theoretical oscillation pattern. We then obtain a highly precise determination of the large separation by correlating the observed patterns with this reference. We demonstrate that this pattern is universal and are able to unambiguously assign the eigenmode radial orders and angular degrees. This solves one of the current outstanding problems of asteroseismology hence allowing precise theoretical investigation of red-giant interiors.Comment: Accepted in A&A letter

    Spin down of the core rotation in red giants

    Full text link
    The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. We are now able to probe the rotational behaviour in their deep interiors using the observations of mixed modes. We aim to measure the rotational splittings in red giants and to derive scaling relations for rotation related to seismic and fundamental stellar parameters. We have developed a dedicated method for automated measurements of the rotational splittings in a large number of red giants. Ensemble asteroseismology, namely the examination of a large number of red giants at different stages of their evolution, allows us to derive global information on stellar evolution. We have measured rotational splittings in a sample of about 300 red giants. We have also shown that these splittings are dominated by the core rotation. Under the assumption that a linear analysis can provide the rotational splitting, we observe a small increase of the core rotation of stars ascending the red giant branch. Alternatively, an important slow down is observed for red-clump stars compared to the red giant branch. We also show that, at fixed stellar radius, the specific angular momentum increases with increasing stellar mass. Ensemble asteroseismology indicates what has been indirectly suspected for a while: our interpretation of the observed rotational splittings leads to the conclusion that the mean core rotation significantly slows down during the red giant phase. The slow-down occurs in the last stages of the red giant branch. This spinning down explains, for instance, the long rotation periods measured in white dwarfsComment: Accepted in A&

    Amplitudes and lifetimes of solar-like oscillations observed by CoRoT* Red-giant versus main-sequence stars

    Get PDF
    Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main- sequence stars. Aims. Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for both main-sequence stars and red giants. Methods. An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results. Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a {\mu}Hz). Conclusions. Widths measured in main-sequence stars show a different variation with the effective temperature than red giants. A single scaling law is derived for mode amplitudes of both red giants and main-sequence stars versus their luminosity to mass ratio. However, our results suggest that two regimes may also be compatible with the observations.Comment: Accepted in A&A on 2011 February 8th, now includes corrections (results now more precise on \Gamma and A_max in Section 4.3 and 4.4, fig. 7 corrected consequently

    Non-radial oscillations in the red giant HR7349 measured by CoRoT

    Full text link
    Convection in red giant stars excites resonant acoustic waves whose frequencies depend on the sound speed inside the star, which in turn depends on the properties of the stellar interior. Therefore, asteroseismology is the most robust available method for probing the internal structure of red giant stars. Solar-like oscillations in the red giant HR7349 are investigated. Our study is based on a time series of 380760 photometric measurements spread over 5 months obtained with the CoRoT satellite. Mode parameters were estimated using maximum likelihood estimation of the power spectrum. The power spectrum of the high-precision time series clearly exhibits several identifiable peaks between 19 and 40 uHz showing regularity with a mean large and small spacing of Dnu = 3.47+-0.12 uHz and dnu_02 = 0.65+-0.10 uHz. Nineteen individual modes are identified with amplitudes in the range from 35 to 115 ppm. The mode damping time is estimated to be 14.7+4.7-2.9 days.Comment: 8 pages, A&A accepte

    Close to Uniform Prime Number Generation With Fewer Random Bits

    Full text link
    In this paper, we analyze several variants of a simple method for generating prime numbers with fewer random bits. To generate a prime pp less than xx, the basic idea is to fix a constant qx1εq\propto x^{1-\varepsilon}, pick a uniformly random a<qa<q coprime to qq, and choose pp of the form a+tqa+t\cdot q, where only tt is updated if the primality test fails. We prove that variants of this approach provide prime generation algorithms requiring few random bits and whose output distribution is close to uniform, under less and less expensive assumptions: first a relatively strong conjecture by H.L. Montgomery, made precise by Friedlander and Granville; then the Extended Riemann Hypothesis; and finally fully unconditionally using the Barban-Davenport-Halberstam theorem. We argue that this approach has a number of desirable properties compared to previous algorithms.Comment: Full version of ICALP 2014 paper. Alternate version of IACR ePrint Report 2011/48

    The CoRoT target HD175726: an active star with weak solar-like oscillations

    Full text link
    Context. The CoRoT short runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report observations of the star HD175726 that lasted for 27 days during the first short run of the mission. The time series reveals a high-activity signal and the power spectrum presents an excess due to solar-like oscillations with a low signal-to-noise ratio. Aims. Our aim is to identify the most efficient tools to extract as much information as possible from the power density spectrum. Methods. The most productive method appears to be the autocorrelation of the time series, calculated as the spectrum of the filtered spectrum. This method is efficient, very rapid computationally, and will be useful for the analysis of other targets, observed with CoRoT or with forthcoming missions such as Kepler and Plato. Results. The mean large separation has been measured to be 97.2+-0.5 microHz, slightly below the expected value determined from solar scaling laws.We also show strong evidence for variation of the large separation with frequency. The bolometric mode amplitude is only 1.7+-0.25 ppm for radial modes, which is 1.7 times less than expected. Due to the low signal-to-noise ratio, mode identification is not possible for the available data set of HD175726. Conclusions. This study shows the possibility of extracting a seismic signal despite a signal-to-noise ratio of only 0.37. The observation of such a target shows the efficiency of the CoRoT data, and the potential benefit of longer observing runs.Comment: 8 pages. Accepted in A&

    Amplitudes of solar-like oscillations in red-giant stars: Evidences for non-adiabatic effects using CoRoT observations

    Full text link
    A growing number of solar-like oscillations has been detected in red giant stars thanks to CoRoT and Kepler space-crafts. The seismic data gathered by CoRoT on red giant stars allow us to test mode driving theory in physical conditions different from main-sequence stars. Using a set of 3D hydrodynamical models representative of the upper layers of sub- and red giant stars, we computed the acoustic mode energy supply rate (Pmax). Assuming adiabatic pulsations and using global stellar models that assume that the surface stratification comes from the 3D hydrodynamical models, we computed the mode amplitude in terms of surface velocity. This was converted into intensity fluctuations using either a simplified adiabatic scaling relation or a non-adiabatic one. From L and M (the luminosity and mass), the energy supply rate Pmax is found to scale as (L/M)^2.6 for both main-sequence and red giant stars, extending previous results. The theoretical amplitudes in velocity under-estimate the Doppler velocity measurements obtained so far from the ground for red giant stars by about 30%. In terms of intensity, the theoretical scaling law based on the adiabatic intensity-velocity scaling relation results in an under-estimation by a factor of about 2.5 with respect to the CoRoT seismic measurements. On the other hand, using the non-adiabatic intensity-velocity relation significantly reduces the discrepancy with the CoRoT data. The theoretical amplitudes remain 40% below, however, the CoRoT measurements. Our results show that scaling relations of mode amplitudes cannot be simply extended from main-sequence to red giant stars in terms of intensity on the basis of adiabatic relations because non-adiabatic effects for red giant stars are important and cannot be neglected. We discuss possible reasons for the remaining differences.Comment: 9 pages, 5 figures, accepted for publication in Astronomy & Astrophysics ; updated references, language improvement, figure 2 rescale
    corecore