93 research outputs found

    Members of the Hyposoter didymator Ichnovirus repeat element gene family are differentially expressed in Spodoptera frugiperda

    Get PDF
    BACKGROUND: The abundance and the conservation of the repeated element (rep) genes in Ichnoviruses genomes suggest that this gene family plays an important role in viral cycles. In the Ichnovirus associated with the wasp Hyposoter didymator, named HdIV, 10 rep genes were identified to date. In this work, we report a relative quantitative transcription study of these HdIV rep genes in several tissues of the lepidopteran host Spodoptera frugiperda as well as in the H. didymator wasps. RESULTS: The data obtained in this work indicate that, in the early phases of infection (24 hours), HdIV rep genes each display different levels of transcripts in parasitized 2(nd )instar or HdIV-injected last instar S. frugiperda larvae. Only one, rep1, is significantly transcribed in female wasps. Transcript levels of the HdIV rep genes were found as not correlated to their copy number in HdIV genome. Our results also show that HdIV rep genes display different tissue specificity, and that they are primarily transcribed in S. frugiperda fat body and cuticular epithelium. CONCLUSION: This work is the first quantitative analysis of transcription of the ichnovirus rep gene family, and the first investigation on a correlation between transcript levels and gene copy numbers in Ichnoviruses. Our data indicate that, despite similar gene copy numbers, not all the members of this gene family are significantly transcribed 24 hours after infection in lepidopteran larvae. Additionally, our data show that, as opposed to other described HdIV genes, rep genes are little transcribed in hemocytes, thus suggesting that they are not directly associated with the disruption of the immune response but rather involved in other physiological alterations of the infected lepidopteran larva

    Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels

    Get PDF
    BACKGROUND: Genomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens. In this study, we analyzed transcriptional variations in the two main effectors of the insect immune response, the hemocytes and the fat body, after injection of filter-purified HdIV. RESULTS: Results show that 24 hours post-injection, about 4% of the 1750 arrayed host genes display changes in their transcript levels with a large proportion (76%) showing a decrease. As a comparison, in S. frugiperda fat body, after injection of the pathogenic JcDNV densovirus, 8 genes display significant changes in their transcript level. They differ from the 7 affected by HdIV and, as opposed to HdIV injection, are all up-regulated. Interestingly, several of the genes that are modulated by HdIV injection have been shown to be involved in lepidopteran innate immunity. Levels of transcripts related to calreticulin, prophenoloxidase-activating enzyme, immulectin-2 and a novel lepidopteran scavenger receptor are decreased in hemocytes of HdIV-injected caterpillars. This was confirmed by quantitative RT-PCR analysis but not observed after injection of heat-inactivated HdIV. Conversely, an increased level of transcripts was found for a galactose-binding lectin and, surprisingly, for the prophenoloxidase subunits. The results obtained suggest that HdIV injection affects transcript levels of genes encoding different components of the host immune response (non-self recognition, humoral and cellular responses). CONCLUSION: This analysis of the host-polydnavirus interactions by a microarray approach indicates that the presence of HdIV induces, directly or indirectly, variations in transcript levels of specific host genes, changes that could be responsible in part for the alterations observed in the parasitized host physiology. Development of such global approaches will allow a better understanding of the strategies employed by parasites to manipulate their host physiology, and will permit the identification of potential targets of the immunosuppressive polydnaviruses

    Analysis of sequence variability in the CART gene in relation to obesity in a Caucasian population

    Get PDF
    BACKGROUND: Cocaine and amphetamine regulated transcript (CART) is an anorectic neuropeptide located principally in hypothalamus. CART has been shown to be involved in control of feeding behavior, but a direct relationship with obesity has not been established. The aim of this study was to evaluate the effect of polymorphisms within the CART gene with regards to a possible association with obesity in a Caucasian population. RESULTS: Screening of the entire gene as well as a 3.7 kb region of 5' upstream sequence revealed 31 SNPs and 3 rare variants ; 14 of which were subsequently genotyped in 292 French morbidly obese subjects and 368 controls. Haplotype analysis suggested an association with obesity which was found to be mainly due to SNP-3608T>C (rs7379701) (p = 0.009). Genotyping additional cases and controls also of European Caucasian origin supported further this possible association between the CART SNP -3608T>C T allele and obesity (global p-value = 0.0005). Functional studies also suggested that the SNP -3608T>C could modulate nuclear protein binding. CONCLUSION: CART SNP -3608T>C may possibly contribute to the genetic risk for obesity in the Caucasian population. However confirmation of the importance of the role of the CART gene in energy homeostasis and obesity will require investigation and replication in further populations

    Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders.

    Get PDF
    Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called episignatures ). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders

    Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    Get PDF
    Background: Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported

    Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders

    Get PDF
    Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions

    Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein

    Get PDF
    Purpose Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. Methods We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. Results We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. Conclusion Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping

    Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders.

    Get PDF
    Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions
    corecore