16 research outputs found

    Elaborated Action of the Human Primosome

    No full text
    The human primosome is a 340-kilodalton complex of primase (DNA-dependent RNA polymerase) and DNA polymerase α, which initiates genome replication by synthesizing chimeric RNA-DNA primers for DNA polymerases δ and ϵ. Accumulated biochemical and structural data reveal the complex mechanism of concerted primer synthesis by two catalytic centers. First, primase generates an RNA primer through three steps: initiation, consisting of dinucleotide synthesis from two nucleotide triphosphates; elongation, resulting in dinucleotide extension; and termination, owing to primase inhibition by a mature 9-mer primer. Then Polα, which works equally well on DNA:RNA and DNA:DNA double helices, intramolecularly catches the template primed by a 9mer RNA and extends the primer with dNTPs. All primosome transactions are highly coordinated by autoregulation through the alternating activation/inhibition of the catalytic centers. This coordination is mediated by the small C-terminal domain of the primase accessory subunit, which forms a tight complex with the template:primer, shuttles between the primase and DNA polymerase active sites, and determines their access to the substrate

    Crystallization and preliminary crystallographic analysis of the complex of the second and third regulatory subunits of human Pol δ

    No full text
    The cloning, expression, purification and crystallization of the complex of the second and third regulatory subunits of human Pol δ are reported. The crystals were characterized and an X-ray diffraction data set was collected to a resolution of 3 Å

    Comment on “The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport”

    No full text
    O’Brien et al. (Research Article, 24 February 2017, eaag1789) proposed a novel mechanism of primase function based on redox activity of the iron-sulfur cluster buried inside the C-terminal domain of the large primase subunit (p58C). Serious problems in the experimental design and data interpretation raise concerns about the validity of the conclusions.National Institute of General Medical Sciences grant GM101167 to T.H.T.Peer Reviewe

    Degradable Poly(3-hydroxybutyrate)—The Basis of Slow-Release Fungicide Formulations for Suppressing Potato Pathogens

    No full text
    Three-component slow-release fungicide formulations with different modes of action of the active ingredients for suppressing potato pathogens were constructed for the first time. The difenoconazole, mefenoxam, prothioconazole, and azoxystrobin fungicides were embedded in the degradable polymer P(3HB)/birch wood flour blend and examined using SEM, IR spectroscopy, X-ray analysis, DTA, and DSC. Results showed that no chemical bonds were established between the components and that they were physical mixtures that had a lower degree of crystallinity compared to the initial P(3HB), which suggested different crystallization kinetics in the mixtures. The degradation behavior of the experimental formulations was investigated in laboratory micro-ecosystems with pre-characterized field soil. The slow-release fungicide formulations were prolonged-action forms with a half-life of at least 50–60 d, enabling gradual and sustained delivery of the active ingredients to plants. All slow-release fungicide formulations had a strong inhibitory effect on the most common and harmful potato pathogens (Phytophthorainfestans, Alternarialongipes, Rhizoctoniasolani, and Fusariumsolani)
    corecore