2,984 research outputs found
On a fourth order nonlinear Helmholtz equation
In this paper, we study the mixed dispersion fourth order nonlinear Helmholtz
equation in for positive, bounded and -periodic functions . Using
the dual method of Evequoz and Weth, we find solutions to this equation and
establish some of their qualitative properties
Local real-space view of the achiral 1T\text{\ensuremath{-}}{\mathrm{TiSe}}_{2} charge density wave
The transition metal dichalcogenide 1TâTiSe2-two-dimensional layered material undergoing a commensurate 2Ă2Ă2 charge density wave (CDW) transition with a weak periodic lattice distortion (PLD) below â200 K. Scanning tunneling microscopy (STM) combined with intentionally introduced interstitial Ti atoms allows us to go beyond the usual spatial resolution of STM and to intimately probe the three- dimensional character of the PLD. Furthermore, the inversion-symmetric achiral nature of the CDW in the z direction is revealed, contradicting the claimed existence of helical CDW stacking and associated chiral order. This study paves the way to a simultaneous real-space probing of both charge and structural reconstructions in CDW compounds
Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size
We identify a class of composite membranes: fluid bilayers coupled to an
elastic meshwork, that are such that the meshwork's energy is a function
\textit{not} of the real microscopic membrane area ,
but of a \textit{smoothed} membrane's area , which corresponds to the
area of the membrane coarse-grained at the mesh size . We show that the
meshwork modifies the membrane tension both below and above the scale
, inducing a tension-jump . The
predictions of our model account for the fluctuation spectrum of red blood
cells membranes coupled to their cytoskeleton. Our results indicate that the
cytoskeleton might be under extensional stress, which would provide a means to
regulate available membrane area. We also predict an observable tension jump
for membranes decorated with polymer "brushes"
Microwave Assisted Synthesis of Py-Im Polyamides
Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5âČ-WGWWCW-3âČ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps
Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations
We analyze the temporal fluctuations of the flow field associated to a
shear-induced transition in a lyotropic lamellar phase: the layering transition
of the onion texture. In the first part of this work [Salmon et al., submitted
to Phys. Rev. E], we have evidenced banded flows at the onset of this
shear-induced transition which are well accounted for by the classical picture
of shear-banding. In the present paper, we focus on the temporal fluctuations
of the flow field recorded in the coexistence domain. These striking dynamics
are very slow (100--1000s) and cannot be due to external mechanical noise.
Using velocimetry coupled to structural measurements, we show that these
fluctuations are due to a motion of the interface separating the two
differently sheared bands. Such a motion seems to be governed by the
fluctuations of , the local stress at the interface between the
two bands. Our results thus provide more evidence for the relevance of the
classical mechanical approach of shear-banding even if the mechanism leading to
the fluctuations of remains unclear
Local resilience of the 1T\text{\ensuremath{-}}{\mathrm{TiSe}}_{2} charge density wave to Ti self-doping
In Ti-intercalated self-doped 1TâTiSe2 crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the long-range phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the 1TâTiSe2 CDW reveals an entangled mechanism between CDW, periodic lattice distortion, and induced nonequivalent defects
Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida)
Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea. We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea. Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens
Milli-arcsecond astrophysics with VSI, the VLTI spectro-imager in the ELT era
Nowadays, compact sources like surfaces of nearby stars, circumstellar
environments of stars from early stages to the most evolved ones and
surroundings of active galactic nuclei can be investigated at milli-arcsecond
scales only with the VLT in its interferometric mode. We propose a
spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe
these sources both over spatial and spectral scales in the near-infrared
domain. This instrument will provide information complementary to what is
obtained at the same time with ALMA at different wavelengths and the extreme
large telescopes.Comment: 8 pages. To be published in the proceedings of the ESO workshop
"Science with the VLT in the ELT Era", held in Garching (Germany) on 8-12
October 2007, A. Moorwood edito
Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology
The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field
Brunet-Derrida behavior of branching-selection particle systems on the line
We consider a class of branching-selection particle systems on similar
to the one considered by E. Brunet and B. Derrida in their 1997 paper "Shift in
the velocity of a front due to a cutoff". Based on numerical simulations and
heuristic arguments, Brunet and Derrida showed that, as the population size
of the particle system goes to infinity, the asymptotic velocity of the system
converges to a limiting value at the unexpectedly slow rate . In
this paper, we give a rigorous mathematical proof of this fact, for the class
of particle systems we consider. The proof makes use of ideas and results by R.
Pemantle, and by N. Gantert, Y. Hu and Z. Shi, and relies on a comparison of
the particle system with a family of independent branching random walks
killed below a linear space-time barrier
- âŠ