3 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    A facile preparation of FePt-loaded few-layer MoS2 nanosheets nanocomposites (F-MoS2-FePt NCs) and their application for colorimetric detection of H2O2 in living cells

    No full text
    Abstract Background Rapid and sensitive detection of H2O2 especially endogenous H2O2 is of great importance for series of industries including disease diagnosis and therapy. In this work, uniform FePt nanoparticles are successfully anchored onto Few-layer molybdenum disulfide nanosheets (F-MoS2 NSs). The powder X-ray diffraction, transmission electron microscopy, UV–Vis spectra and atomic force microscopy were employed to confirm the structure of the obtained nanocomposites (F-MoS2-FePt NCs). The prepared nanocomposites show efficient peroxidase-like catalytic activities verified by catalyzing the peroxidation substrate 4,4′-diamino-3,3′,5,5′-tetramethylbiphenyl (TMB) with the existence of H2O2. Results The optimal conditions of the constructed colorimetric sensing platform is proved as 35 °C and pH 4.2. Under optimal catalytic conditions, the detection limit for H2O2 detection reaches 2.24 μM and the linear ranger is 8 μM to 300 μM. Furthermore, the proposed colorimetric sensing platform was successfully utilized to detect the intracellular H2O2 of cancer cells (MCF-7). Conclusions These findings indicated that the F-MoS2-FePt-TMB-H2O2 system provides a potential sensing platform for hydrogen peroxide monitoring in living cells
    corecore