38 research outputs found

    How the physical similarity of avatars can influence the learning of emotion regulation strategies in teenagers

    Full text link
    The aim of this study is to evaluate the influence of the physical similarity of avatars with the user on emotion regulation strategy training. In this study twenty-four teenagers observed an avatar (either physically similar to the participant or neutral) that gets frustrated with his/her computer, after which he/she applies an emotion regulation strategy (slow breathing). The intensity of the emotional induction and regulation processes was measured using questionnaires and electroencephalogram data. The results show that observing an avatar that is physically similar to the participant has a significantly greater impact on emotional valence and arousal in participants and also induces emotional states that are significantly more intense than when observing a neutral avatar. The results seem to indicate significantly greater activation of specific brain regions that are related to these processes and greater identification with the avatar in terms of both subjective and objective measures in participants that observed an avatar that was physically similar to them. However, there were no significant differences in the sense of presence or the appeal (i.e., satisfaction) to participants regarding the virtual environment. The use of avatars in mental health applications is relatively new and its specific influence is still unknown. We consider this study to be a first step forward in better understanding the use of avatars in mental health applications for youth. This research brings new guidelines to the design of different types of applications in this field in order to achieve greater behavioral changes in youth.Wrzesien, M.; Rodriguez Ortega, A.; Rey, B.; Alcañiz Raya, ML.; Banos, R.; Vara, M. (2015). How the physical similarity of avatars can influence the learning of emotion regulation strategies in teenagers. Computers in Human Behavior. 43:101-111. doi:10.1016/j.chb.2014.09.024S1011114

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →μ⁺μ⁻K⁺K⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb1^{-1}. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj_{γjj} production in a restricted fiducial region is measured as 20.4 +/- 4.5 fb and the total cross section for Wγ_{γ} production in association with 2 jets in the same fiducial region is 108 +/- 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators

    Performance of the CMS Level-1 trigger in proton-proton collisions at √s = 13 TeV

    Get PDF
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13\TeV. During Run 2 (years 2015–2018) the LHC eventually reached a luminosity of 2.1× 1034^{34} cm2^{-2}s1^{-1}, almost three times that reached during Run 1 (2009–2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016–2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals

    Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at s=13 TeV

    Get PDF
    The first measurements of production cross sections of polarized same-sign W±W±boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13TeV, corresponding to an integrated luminosity of 137fb−1. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W±W±scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88)fbis set on the production cross section for longitudinally polarized same-sign W±W±boson pairs. The electroweak production of same-sign W±W±boson pairs with at least one of the Wbosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.SCOAP

    Directly observed therapy to measure adherence to tuberculosis medication in observational research: Protocol for a prospective cohort study

    Get PDF
    Background: A major challenge for prospective, clinical tuberculosis (TB) research is accurately defining a metric for measuring medication adherence. Objective: We aimed to design a method to capture directly observed therapy (DOT) via mobile health carried out by community workers. The program was created specifically to measure TB medication adherence for a prospective TB cohort in Western Cape Province, South Africa. Methods: Community workers collect daily adherence data on mobile smartphones. Participant-level adherence, program-level adherence, and program function are systematically monitored to assess DOT program implementation. A data dashboard allows for regular visualization of indicators. Numerous design elements aim to prevent or limit data falsification and ensure study data integrity. Results: The cohort study is ongoing and data collection is in progress. Enrollment began on May 16, 2017, and as of January 12, 2021, a total of 236 participants were enrolled. Adherence data will be used to analyze the study’s primary aims and to investigate adherence as a primary outcome. Conclusions: The DOT program includes a mobile health application for data collection as well as a monitoring framework and dashboard. This approach has potential to be adapted for other settings to improve the capture of medication adherence in clinical TB research

    Simulation of Soft Deformable Objects for Virtual Reality Medical Applications

    No full text
    Asia Simulation Conference 2007,Seoul, Korea, 10-12 Oct 2007Interactive simulation of deformable objects is a key component in various virtual reality medical applications. While many methods based on mass-spring models have been proposed, this paper presents an alternative that considers deformation as a result of forces propagating sequentially from one mass point to another, where matrix formulation is not required. The simulation speed is controllable by varying the scope of localized deformation. Detailed study on the propagation sequence and penetration depth is performed. Simulation speed is improved with the aid of a lookup table created by pre-computation. Results on deformable simulation and timing performance are presented. The approach is feasible for developing medical applications involving interactive simulation of soft deformable objects.School of NursingRefereed conference pape

    Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells

    No full text
    Myeloid-derived suppressor cells (MDSCs) densely accumulate into tumors and potently suppress antitumor immune responses, promoting tumor development. Targeting MDSCs in tumor immunotherapy has been hampered by lack of understanding of the molecular pathways that govern MDSC differentiation and function. Herein, we identify autophagy as a crucial pathway for MDSC-mediated suppression of antitumor immunity. Specifically, MDSCs in patients with melanoma and mouse melanoma exhibited increased levels of functional autophagy. Ablation of autophagy in myeloid cells markedly delayed tumor growth and endowed antitumor immune responses. Notably, tumor-infiltrating autophagy-deficient monocytic MDSCs (M-MDSCs) demonstrated impaired suppressive activity in vitro and in vivo, whereas transcriptome analysis revealed substantial differences in genes related to lysosomal function. Accordingly, autophagy-deficient M-MDSCs exhibited impaired lysosomal degradation, thereby enhancing surface expression of MHC class II molecules, resulting in efficient activation of tumor-specific CD4+ T cells. Finally, targeting of the membrane-associated RING-CH1 (MARCH1) E3 ubiquitin ligase that mediates the lysosomal degradation of MHC II in M-MDSCs attenuated their suppressive function, and resulted in markedly decreased tumor volume followed by development of a robust antitumor immunity. Collectively, these findings depict autophagy as a molecular target of MDSC-mediated suppression of antitumor immunity. © 2018 American Society for Clinical Investigation. All rights reserved
    corecore