315 research outputs found

    Cell cycle synchronization

    Get PDF

    Generation of Marker- and Backbone-Free Transgenic Potatoes by Site-Specific Recombination and a Bi-Functional Marker Gene in a Non-Regular One-Border Agrobacterium Transformation Vector

    Get PDF
    A binary vector, designated PROGMO, was constructed to assess the potential of the Zygosaccharomyces rouxii R/Rs recombination system for generating marker- and backbone-free transgenic potato (Solanum tuberosum) plants with high transgene expression and low copy number insertion. The PROGMO vector utilises a constitutively expressed plant-adapted R recombinase and a codA-nptII bi-functional, positive/negative selectable marker gene. It carries only the right border (RB) of T-DNA and consequently the whole plasmid will be inserted as one long T-DNA into the plant genome. The recognition sites (Rs) are located at such positions that recombinase enzyme activity will recombine and delete both the bi-functional marker genes as well as the backbone of the binary vector, leaving only the gene of interest flanked by a copy of Rs¿and RB. Efficiency of PROGMO transformation was tested by introduction of the GUS reporter gene into potato. It was shown that after 21 days of positive selection and using 300 mgl¿1 5-fluorocytosine for negative selection, 29% of regenerated shoots carried only the GUS gene flanked by a copy of Rs and RB. The PROGMO vector approach is simple and might be widely applicable for the production of marker- and backbone-free transgenic plants of many crop species

    Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    Get PDF
    Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.00

    Role of serum S100B and PET-CT in follow-up of patients with cutaneous melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased level of serum S100B can serve as a marker of metastatic spread in patients with cutaneous melanoma (CM). In patients with elevated S100 B and/or clinical signs of disease progression PET-CT scan is a valuable tool for discovering metastases and planning treatment.</p> <p>The aims of this study were to determine whether regular measurements of serum S100B are a useful tool for discovering patients with CM metastases and to evaluate the diagnostic value of PET-CT during the follow-up.</p> <p>Methods</p> <p>From September 2007 to February 2010, 115 CM patients included in regular follow up at the Institute of Oncology Ljubljana were appointed to PET-CT. There were 82 (71.3%) patients with clinical signs of disease progression and 33 (28.7%) asymptomatic patients with two subsequent elevated values of S100B. Sensitivity, specificity, positive and negative predictive value (PPV, NPV) of S100B and PET-CT were calculated using standard procedures.</p> <p>Results</p> <p>Disease progression was confirmed in 81.7% of patients (in 86.5% of patients with clinical signs of disease progression and in 69.7% of asymptomatic patients with elevated S100B). Sensitivity, specificity, PPV and NPV of S100B was 33.8%, 90.9%, 96.0% and 17.5% in patients with clinical signs of disease progression. In 20.0% of patients increased serum S100B was the only sign of disease progression. Sensitivity and PPV of S100 in this group of patients were 100.0% and 69.7%.</p> <p>With PET-CT disease progression was diagnosed in 84.2% of symptomatic patients and in 72.7% of asymptomatic patients with elevated S100B. The sensitivity, specificity, PPV and NPV of PET-CT for symptomatic patients was 98.5%, 90.9%, 98.5% and 90.9% and 100%, 90.0%, 95.8% and 100% for asymptomatic patients with elevated S100.</p> <p>Conclusions</p> <p>Measurements of serum S100B during regular follow-up of patients with CM are a useful tool for discovering disease progression in asymptomatic patients. The value of its use increases if measurements are followed by extended whole body PET-CT.</p

    S-100B Concentrations Predict Disease-Free Survival in Stage III Melanoma Patients

    Get PDF
    Elevation of the tumor marker S-100B in melanoma patients is a highly specific indicator of recurrence. The role of S-100B in disease-free survival (DFS) was evaluated in stage III melanoma patients (staged with fluorodeoxyglucose positron emission tomography [FDG-PET] and computed tomography [CT]) with palpable lymph node metastases who underwent therapeutic lymph node dissection. S-100B and LDH were measured on the day before surgery (d = -1) and on days 1, 2, and 7 postoperatively. Multivariate logistic regression was used to study factors associated with preoperative elevation of S-100B. Univariate (log-rank test) and multivariate (Cox regression) survival analyses were performed to identify factors associated with DFS. Between 2004 and 2008, 56 patients (median age 57, range 24-93) years, 27 males (48%) and 29 females (52%) entered the study. Preoperative S-100B elevation was found in 27 patients (48%) and elevated LDH in 20 patients (36%). No association was found between these two markers at any time. Multivariate analysis showed that elevated S-100B preoperatively (hazard ratio [HR] 2.7, P = .03) was associated with DFS. S-100B elevation was associated with increased tumor size (odds ratio [OR] 3.40; P = .03). Elevated S-100B preoperatively in patients with optimally staged clinical stage III melanoma is associated with decreased disease-free survival. S100-B could be used as a prognostic marker in the stratification of new adjuvant trials to select stage III melanoma patients for adjuvant systematic treatment

    Primary malignant melanoma of the stomach: report of a case

    Get PDF
    We report a case of primary malignant melanoma (MM) of the stomach. The patient, a 73-year-old man, was referred to our hospital for investigation of an elevated lesion in the stomach, detected by gastroscopy. On admission, physical examinations and laboratory data were unremarkable. Gastroscopy revealed a pigmented, elevated tumor, approximately 2 cm in diameter, in the posterior wall of the stomach. A biopsy was taken, which resulted in a diagnosis of MM, based on the presence of melanin in tumor cells. F-18 fluorodeoxyglucose positron emission tomography showed no accumulation of tracer except for the tumor in the stomach, indicating that it was a primary MM of the stomach. The patient underwent distal gastrectomy, but died of recurrence 1 year later. Very few cases of primary MM of the stomach have been reported. Thus, we report this case, followed by a review of the literature

    Soybean Seed Extracts Preferentially Express Genomic Loci of Bradyrhizobium japonicum in the Initial Interaction with Soybean, Glycine max (L.) Merr

    Get PDF
    Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 µM), nevertheless SSE-supplemented medium contained 4.7 µM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis

    Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS

    Get PDF
    AbstractThe temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al. 2014; Ly et al. 2015). Here we show that by using specific intracellular immunolabeling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabeled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, which we term ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase.</jats:p

    Model-Based Deconvolution of Cell Cycle Time-Series Data Reveals Gene Expression Details at High Resolution

    Get PDF
    In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure “just-in-time” assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational method to extract “single-cell”-like information from population-level time-series expression data. This method removes the effects of 1) variance in growth rate and 2) variance in the physiological and developmental state of the cell. Moreover, this method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of temporal regulation in a cell
    corecore