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    Chapter 13   

 Synchronization of  Bacillus subtilis  Cells by Spore 
Germination and Outgrowth                     

     Gaspar     Banfalvi      

  Abstract 

   This protocol defi nes conditions under which the germination of spores can be used to synchronize 
 Bacillus subtilis  cells, utilizing the time-ordered sequence of events taking place during the transition from 
spore to vegetative cells. The transition stages involve: phase change, swelling, emergence, initial division, 
and elongation. By using this method we have obtained two distinctive synchronized cell cycles, while the 
synchrony faded away in the third cycle. The advantage of using spore outgrowth and germination is that 
a highly synchronized population of bacterial cells can be obtained. Non-dividing spores stay synchro-
nized, while synchrony rapidly decays during a few divisions. The limitations of this method are that it can 
be applied only for sporulating bacteria and synchrony lasts for only a limited period of time exceeding not 
more than two cycles.  

  Key words     Endospore formation  ,   Spore outgrowth  ,   Transition stage  ,   Vegetative cells  ,   Permeabilization  , 
  DNA synthesis  ,   Spectrophotometry  

1      Introduction 

 The process of vegetative bacterial cells converted into a dormant 
structure is called sporogenesis and the return to the vegetative 
stage is known as spore germination. Contrary to  endospores  ,  veg-
etative cells   are capable to active growth. Endospore formation is 
typical to three genera of Gram-positive bacteria: Bacillus ( B. 
anthracis ,  B. subtilis ),  Clostridium  ( C. botulinum ,  C. perfi ngens ,  C. 
tetani ), and Sporosarcina.  Bacillus subtilis  is a sporulating model 
organism for differentiation, gene/protein regulation, and  cell 
cycle   events [ 1 ]. That sporulation and spore germination can be 
used as a model system to study the transition between different cell 
forms has been described four decades ago [ 2 – 4 ] .  In spore- forming 
bacteria, “de novo” nucleotide synthesis is not operative in the early 
 stage   of transition from spore to vegetative stage known as germi-
nation [ 5 ]. After the germination stage, the nucleoside triphosphate 
levels increase rapidly by the utilization of the nucleoside and 
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nucleoside monophosphate pools of the dormant spores [ 6 ]. 
Consequently,  DNA synthesis   takes place only after the formation 
of these substrates. The processes of germination and  spore out-
growth   take place in a time-ordered sequence allowing to follow 
closely the transition between spore and vegetative stages [ 7 – 13 ]. 

 The process of germination of the bacterial spore  is   known as 
a change from the heat-resistant to a heat-labile stage which does 
not represent the true  vegetative cell  . The transition has been 
divided into two distinct stages. The term germination is known as 
the fi rst stage and the transformation of germinated spores into 
vegetative cells is called outgrowth [ 14 ], or post-germinative 
development [ 15 ]. One of the most important reactions in this 
chain is the initiation of germination also referred to as trigger 
reaction. The germination process can be triggered by heavy met-
als, heat, hydrostatic pressure, a variety of chemicals of nutrient, 
and non-nutrient origin [ 16 ] .  Although little is known about the 
mechanism of activation, it is believed that molecular rearrange-
ments taking place inside the spores develop into the germination 
process. The triggering is operationally similar to the opposite pro-
cess of sporulation representing a stage of no return. One of the 
best triggering agent is  L -alanine when present in high concentra-
tion in the germination medium. It was demonstrated that a short 
exposure to  L -alanine caused a subsequent germination in spores of 
 Bacillus cereus  [ 17 ]. The quintessential germination receptor in  B. 
subtilis  is GerA that is activated by a single germinant,  L -alanine 
and inhibited by its stereoisomer,  D -alanine [ 18 ] .  Most of what is 
known about Ger receptor function has been derived from studies 
in the gerA operon [ 19 ]. A homologous gerA operon of  B. subtilis  
was isolated from  Bacillus thuringiensis  [ 20 ]. 

 The germination process involves loss of resistance to injuring 
agents such as heat or heavy metals, loss of refractibility, decrease 
in the optical density of the spore suspension, increase in stainabil-
ity [ 21 ,  22 ], decrease in dry weight due to the loss of picolinic acid, 
calcium and mucopeptides [ 23 ], the initiation of respiration [ 24 ], 
as well as imbibition of water [ 25 ]. These changes point to initial 
biochemical steps preceding visual signs of germination. Outgrowth 
includes four stages occurring in the following order: swelling, 
emergence from the spore coat, elongation of the emergent organ-
ism, and fi nally division of the elongated organism. 

 As the bacterial  endospore   metabolism, structure and compo-
sition differ from that of the vegetative  cel  l, sporulation and spore 
germination can be applied as a simple model system to study bio-
chemical mechanism regulating these transitions. The differentia-
tion is cyclic and can serve the purpose of synchronizing those 
bacteria that undergo sporulation. This chapter describes how ger-
mination and outgrowth of  Bacillus subtilis  ATCC23857(strain 
68, indole − ) can be adapted for cell cycle synchronization. Studies 
have shown that in cells of  B. subtilis  168 rendered permeable to 
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small molecules by treatment with toluene, the incorporation of 
[ 3 H]dTTP incorporation depended on the presence of ATP  and 
  was sensitive to the inhibitor of  DNA replication   (6-(( p - 
hydroxyphenyl)azo))uracil (HP-Ura) and to the gyrase inhibitor 
novobiocin [ 26 ].  

2     Materials 

       1.    Indole.   

   2.    Trichloroacetic acid.   

   3.    Casamino acids (Bacto), Becton, Dickinson and Company 
(Sparks, MD).   

   4.    60 Ci/mmol  3 H-dTTP, 100 Ci/mmol  3 H-thymidine 
(Amersham Pharmacia Biotech AB, Uppsala, Sweden).   

   5.    K 2 HPO 4 , KH 2 PO 4 , (NH 4 ) 2 SO 4 , trisodium citrate.   

   6.    MgSO 4  7 H 2 O, FeCl 3 .6 H 2 O.   

   7.    Amino acids:  L -alanine,  L -arginine,  L -asparagine, sodium gluta-
mate,  L -histidine,  L -methionine,  L -phenylalanine,  L -serine,  L - 
threonine,  L -tryptophane.   

   8.    Nucleotides: ATP, dATP, dGTP, dCTP.   

   9.    Inhibitors of  DNA synthesis  : 1-β- D -arabinofuranosyl-cytosine- -
5′-triphosphate (ara-dCTP) (6-(( p -hydroxyphenyl)azo))uracil 
(HP-Ura).      

       1.    1.5 ml microcentrifuge tubes (Eppendorf, Hamburg, 
Germany).   

   2.    5, 15, and 50 ml conical centrifuge tubes (BD Falcon, San 
José, USA).   

   3.    Glass culture tubes and fl asks.   

   4.    Whatman GF/C glass microfi lters diameter 2.4 cm,    Sigma- 
Aldrich (St. Louis, MO).   

   5.    Rotating incubator.   

   6.    Microcentrifuge tubes.   

   7.     Spectrophotometer   and cuvettes.      

       1.    KPO 4  buffer (K 2 HPO 4 /KH 2 PO 4 ), 0.5 M, pH 7.5, 2 M 
MgSO 4 , 15 mM ATP, 0.4 mM dNTP (dATP, dGTP, dCTP, 
each), 2 mM HP-Ura, 2 mM 1-β- D -arabinofuranosylcytosine-
5′-triphosphate (ara-dCTP) ( see   Notes    1–3  ).   

   2.    Betafl uor, pre-mixed scintillation solution, National 
Diagnostics, Atlanta, GA.      

2.1  Chemicals

2.2  Disposables, 

Instruments

2.3  Buffers, 

Solutions
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       1.    Spores of  B. subtilis  168 in 1.5 ml microcentrifuge tubes were 
kept in 50 % glycerol ( see   Note    4  ).   

   2.    Lyophylized spores: 10 mg spores plus 1 ml 50 % glycerol 
(10 mg/ml).      

       1.    Sterile germination medium, pH 7.4 contained 14 g K 2 HPO 4 , 
6 g KH 2 PO 4 , 2 g (NH 4 ) 2 SO 4 , 1 g trisodium citrate, 0.5 g 
MgSO 4  7 H 2 O, 8 mg FeCl 3 .6 H 2 O, 0.5 g  L -alanine, 50 mg  L - 
arginine, 50 mg  L -asparagine, 100 mg sodium glutamate, 
50 mg  L -histidine, 5 mg  L -methionine, 50 mg  L -phenylalanine, 
5 mg  L -serine, 100 mg  L -threonine, 50 mg  L -tryptophane in 1 l.   

   2.    For germination: To 30 ml germination medium 0.3 ml 50 % 
glucose and 1.5 ml 10 mg/ml spores were added ( see   Note    5  ).      

       1.    Germination was monitored by the decrease  in   optical density 
at 525 nm on a Beckman  spectrophotometer   ( see   Note    6  ).      

       1.    Antibiotic medium 3 (Penassay broth) (DIFCO—Becton 
Dickinson and Company, Franklin Lakes, NJ): 5 g/l Tryptone, 
1.5 g/l yeast extract, 1.5 g/l beef extract, 3.5 g/l sodium chlo-
ride, 1 g/l dextrose, 3.68 g/l potassium phosphate dibasic, 
1.32 g/l potassium phosphate monobasic. pH adjusted to 6.9.   

   2.    Medium C, pH 7.4 contained in 1 l: 14.0 g K 2 HPO 4 , 6.0 g 
KH 2 PO 4 , 2 g (NH 4 ) 2 SO 4 , 1 g trisodium citrate, 0.2 g MgSO 4  
7 H 2 O, 5 g glucose, 0.5 g casamino acids and 50 mg indole.       

3    Methods 

       1.    To 50 ml Penassay broth, 10 μl spores in 50 % glycerol were 
added and grown overnight in a 250 ml Erlenmeyer fl ask at 
37 °C in a Becton Dickinson orbital incubator shaker (General 
Scientifi c Instrument Services Inc., London, UK) at 100 rpm. 
From the overnight culture 4 ml was added to 200 ml medium 
C in a 1 l fl ask and grown at 37 °C in the orbital shaker at 
100 rpm.      

       1.    At 3 × 10 7  cells/ml density take 25 ml cells each in six 50 ml 
conical tubes and harvest them in a Beckmann J21 centrifuge 
at room temperature (5000 ×  g , 5 min). Decant the superna-
tant and resuspend the pellet of each tube in 2 ml of 0.1 M 
KPO 4  buffer, pH 7.4. Pool the suspension in one 15 ml tube 
and spin down cells. Resuspend cells in 3 ml 0.1 M KPO 4  buf-
fer, pH 7.4, add 30 μl toluene. Shake the mixture for 10 min 
at room temperature then chill it in ice. Add 10 ml cold 0.1 M 
KPO 4  buffer, pH 7.4, spin in centrifuge and resuspend cells in 
1.5 ml of the phosphate buffer. The density of cells 

2.4  Lyophylized 

Spores

2.5  Germination 

of Spores

2.6   Monitoring   

of Germination

2.7  Cell  Culture 

Medium  

3.1  Cell Growth

3.2  Preparation 

of Toluene- Treated 

Cells

Gaspar Banfalvi

banfalvi.gaspar@science.unideb.hu



209

(1.5 ml/4.5 × 10 9 ) corresponds to 3 × 10 9  cells/ml. Distribute 
toluene-treated cells  in   100 μl aliquotes, freeze them in liquid 
nitrogen ( see   Note    7  ).      

       1.    Homogenized lyophylized spores (20 mg + 2 ml H 2 O) in a 
5 ml test tube were subjected to a Bronson sonicator, model 
B-12, with a microtip and setting 4 for 5 min at 1 min intervals 
while immersed in ice-water bath.   

   2.    Sonicated spores were prewarm to 37 °C for 5 min and heat- 
activated at 80 °C for 20 min.   

   3.    Heat-activated spores were centrifuged at 5000 ×  g  for 10 min 
at +4 °C in a Sorwall RC2-B centrifuge (Ivan Sorwall, Inc., 
Norwalk, Co., USA).   

   4.    The pellet of spores was resuspended in sterile 2 ml H 2 O 
(10 mg/ml).   

   5.    Germination was initiated in a 250 ml Erlenmeyer fl ask by add-
ing to 30 ml germination medium 0.3 ml 50 % glucose and 
1.5 ml 10 mg/ml heat activated spores. Germination mixture 
was placed in a rotary shaker with the temperature set at 37 °C 
and a rotary speed of 100 rpm.   

   6.    Germination was  monitor  ed by measuring the optical density 
at 525 nm in a  spectrophotometer  .      

   To assure that in outgrowing spores of  B. subtilis  168 replicative 
 DNA synthesis   is dealt with, the inhibition of DNA  replicati  on can 
be measured in the presence and absence of both ATP and HP-Ura. 
Table  1  demonstrates that in toluene-treated permeable  B. subtilis  
cells DNA synthesis is an ATP-dependent process and this process 
can be blocked by inhibitors of semiconservative replication.

          1.     3 H-thymidine incorporation is advised to be measured from 
zero level absorption every 10 min by adding 5 μl  3 H-thymidine 
to 0.3 ml germination medium and 0.2 ml germination mix-
ture incubated at 37 °C for 10 min.   

   2.    Terminate DNA synthesis by adding 5 ml 0.3 M ice-cold tri-
chloroacetic acid (TCA).   

   3.    Collect precipitate on Whatman GF/C glass fi ber fi lter,    wash 
three times with 5 ml portions of 0.3 M TCA and then with 
absolute alcohol.   

   4.    Dry fi lters under an infrared lamp and the radioactivity deter-
mined with a toluene-based scintillation fl uid.     

 A typical spore germination and outgrowth curve as well as the 
DNA synthesis profi le are shown in Fig.  1 . A lag period can be seen 
between the addition of the germination-inducing medium and 
the fi rst sign of germination manifested as a decrease of absorption 
corresponding to the observation of Woese and Morowitz [ 27 ] .  

3.3  Spore 

Germination 

and Outgrowth

3.4   DNA Polymerase 

  Assay in Permeable 

Cells of  B. Subtilis 

3.5   DNA Synthesis   

in Outgrowing Spores
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   Table 1  

  DNA polymerase assay to  prove   semiconservative replication in  B. subtilis  168 toluene-treated cells   

 Number 

of 

sample 

  3 H-dTTP 

(μl) 

 H 2 O 

(μl) 

 KPO 4  

(μl) 

 MgSO 4  

(μl) 

 ATP 

(μl) 

 dNTP 

(μl) 

 HP-Ura 

(μl) 

 +ara- 

dCTP- 

dCTP (μl) 

  B. 

subtilis  

(μl) 

 Counts 

(cpm) 

 1  5  55  14  6  10  –  –  –  10  54 ± 21 

 2  5  55  14  6  –  10  –  –  10  36 ± 16 

 3  5  45  14  6  10  10  –  –  10  1180 ± 38 

 4  5  35  14  6  10  10  10  –  10  337 ± 29 

 5  5  35  14  6  10  10  –  10  10  78 ± 26 

  The fi nal volume of each reaction mixture  was   100 μl. Incubation lasted for 30 min at 37 °C. Termination took place 

by the addition of ice-cold 0.3 M trichloroacetic acid (TCA). Precipitate was collected on Whatman GF/C glass fi ber 

fi lters washed with three 5 ml portions of 0.3 M TCA and then with 3 × 5 ml ethanol. Filters were dried under an infra-

red lamp and the radioactivity was determined in a toluene-based scintillation fl uid  

  Fig. 1    Synchronization of  B.    subtilis    168 cells by  spore outgrowth   and germina-

tion. Lyophylized spores were homogenized, heat-activated and germinated as 

described in the Subheading  2 . Germination is given as decrease in optical den-

sity vs. time. The germination and outgrowth curve consists of ( a ) phase change 

(germination), ( b ) swelling stage (zero level), ( c ) emergence, ( d ) 1st cell cycle, ( e ) 

2nd cell cycle, ( f ) stationary phase (•…•).  DNA synthesis   showing ( b ) the lack of 

 3 H-thymidine incorporation in the swelling stage, ( c ) emergence, ( d ) initiation of 

DNA synthesis and the 1st cell cycle, ( e ) elongation and 2nd cell cycle, ( f ) station-

ary phase (▴…▴). The swelling stage is regarded as the zero level of absorption 

(-•-). For the best synchrony stop outgrowth of spores after the swelling stage 

when the optical density at 525 starts to increase and does not exceed twice the 

value of its original absorption before germination. The upper limit of synchrony 

corresponding to the infl exion point of DNA synthesis (~50 % of maximal out-

growth) is indicated by the  asterisk  ( * ). The two  arrows  (←) indicate the end of 

the fi rst and second round of the cell cycle       
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The germination phase (Fig.  1a ) continues till the absorption 
reaches its minimum referred to as zero level (Fig.  1b ). The zero 
level of absorption is followed by  spore outgrowth   involving RNA 
and protein synthesis and fi nally  DNA synthesis  . The outgrowth 
consists of several subphases (Fig.  1c–f ) including swelling and 
emergence from spore coat (Fig.  1c ), elongation of the emerging 
 vegetative cells   from the spore coats proceeding to the early phase 
of logarithmic growth and  cell division   (Fig.  1d ), to mid logarith-
mic phase and cell growth (Fig.  1e ) and to late log and the station-
ary phase (Fig.  1f ). Synchrony is indicated by the biphasic curve of 
 3 H-thymidine incorporation, involving back-to-back division 
cycles such that the population doubles in number every  genera-
tion time   (Fig.  1d and e ). Synchrony is lost in late logarithmic and 
stationary phase (Fig.  1f ) ( see   Note    8  ).

   However, this does not mean that the stationary phase could 
not be selected for the  synchronization of bacteria  . Cultures of 
 Escherichia coli  and  Proteus vulgaris  have been synchronized by the 
stationary-phase method. This method consists of growing the 
bacteria to an early stationary phase, harvesting them quickly under 
minimal conditions of stress, and inoculating them into fresh 
medium at a dilution of about sevenfold. By repeating this proce-
dure on partially synchronized cultures up to four-generation 
cycles of high percentage of phasing were obtained [ 28 ]. Other 
early methods used fi ltration to synchronize bacteria [ 29 – 31 ], the 
principle of binding bacteria to various surfaces and elute unbound 
sister cells from the surface [ 32 ,  33 ], by means of temperature shift 
[ 34 ], or by  amino    acid   starvation [ 35 ].   

4          Notes 

     1.    Unless otherwise stated, all solutions should be prepared with 
distilled water that has an electric conductance of <0.055 mS 
and an organic content of less than fi ve parts per billion. The 
solvent is mentioned as “distilled water” in the text.   

   2.    KPO 4  buffer is best stored at 4 °C and can be used for up to 
2 months.   

   3.    dNTP solutions (dATP, dGTP, dCTP) have been prepared 
with distilled water and neutralized with 0.1 M NaOH to 
pH 7.5.   

   4.    Freshly harvested spores germinate more reproducibly, but 
spores kept in glycerol also gave reproducible results. For long- 
term storage, spores were stored in 50 % glycerol at –20 °C.   

   5.    To start germination, initial absorbance values at 525 nm 
should be between 0.25 and 0.3 optical density.   

   6.    To obtain best synchrony stop outgrowing spores after the 
swelling stage. The best choice regarding synchrony is to take 
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outgrowing spores after zero level absorption when the OD 
525 nm value starts to increase and reaches the initial optical 
density of spores before germination.   

   7.    After  toluene treatment   work as quickly as possible, toluene- 
treated cells are vulnerable. For short-term storage (1 day) 
keep toluene-treated cells in dry ice–ethanol mixture; for long-
term store permeable  B. subtilis  cells at −80 °C or in liquid 
nitrogen.   

   8.    Do not use outgrowing spores after the infl exion point of the 
growth curve as the vegetative culture will be already in sta-
tionary phase.            

   References 

    1.    Graumann P (ed) (2007) Bacillus: cellular and 
molecular biology, 1st edn. Caister Academic 
Press, Haverhill, UK,   http://www.horizon-
press.com/bac      

    2.    Hansen JN, Spiegelman G, Halvorson HO 
(1970) Bacterial spore outgrowth: its regula-
tion. Science 168:1291–1298  

   3.    Keynan A (1973) The transformation of bacte-
rial endospores into vegetative cells. Symp Soc 
Gen Microbiol 23:85–123  

    4.    Mandelstam J (1976) Bacterial sporulation: a 
problem in the biochemistry and genetics of a 
primitive developmental system. Proc R Soc B 
193:89–106  

    5.    Nelson DL, Kornberg A (1970) Biochemical 
studies of bacterial sporulation and germina-
tion. XVIII. Free amino acids in spores. J Biol 
Chem 245:1128–1136  

    6.    Setlow P, Kornberg A (1970) Biochemical 
studies of bacterial sporulation and germina-
tion. XXIII. Nucleotide metabolism during 
spore germination. J Biol Chem 
245:3645–3652  

    7.    Balassa G (1965) Synthesis macromoleculaires 
au cours de la germination des spores de 
B. Subtilis. I. Cinctique. Ann De I’lnstitut 
Pasteur 109:13–35  

   8.    Balassa G (1969) Biochemical genetics of bacte-
rial sporulation. I. Unidirectional pleiotropic 
interactions among genes controlling sporulation 
in Bacillus subtilis. Mol Gen Genet 104:73–103  

   9.    Kobayashi I, Steinberg W, Higa A, Halvorson 
HO, Levinthal C (1965) Sequential synthesis 
of macromolecules during outgrowth of bacte-
rial spores. In: Campbell LL, Halvorson HO 
(eds) Spores IZZ. American Society for 
Microbiology, Washington, DC, pp 200–212  

   10.    Torriani A, Levinthal C (1967) Ordered syn-
thesis of proteins during outgrowth of spores 
of B. cereus. J Bacteriol 94:176–183  

   11.    Armstrong RL, Sueoka N (1968) Phase transi-
tion in ribonucleic acid synthesis during germi-
nation of B. Subtilis spores. Proc Natl Acad Sci 
U S A 59:153–160  

   12.    Steinberg W, Halvorson HO (1968) Timing of 
enzyme synthesis during outgrowth of Bacillus 
cereus. I. Ordered enzyme synthesis. J Bacteriol 
95:469–478  

    13.    Kennett RN, Sueoka N (1971) Gene expres-
sion during outgrowth of B. subtilis spores. 
The relationship between order on the chro-
mosome and temporal sequence of enzyme 
synthesis. J Mol Biol 60:31–44  

    14.   Campbell LL Jr (1957) Bacterial spore germi-
nation. Defi nitions and methods of study. In 
Spores. HO Halvorson (ed.). American 
Institute of Biological Sciences, Washington, 
DC, pp. 33–38  

    15.    Levinson HS, Hyatt MT (1956) Correlation of 
respiratory activity with phases of spore germi-
nation and growth in Bacillus megaterium as 
infl uenced by manganese and  L -alanine. 
J Bacteriol 72:176–183  

    16.    Halvorson HO (1959) Symposium on initia-
tion of bacterial growth. Bacteriol Rev 
23:267–272  

    17.    Harrell WK, Halvorson H (1955) Studies on 
the role of  L -alanine in the germination of 
spores of Bacillus terminalis. J Bacteriol 
69:275–279  

    18.    Yasuda Y, Tochikubo K (1984) Relation 
between  D -glucose and  L - and  D- alanine in 
the initiation of germination of Bacillus subtilis 
spores. Microbiol Immunol 28:197–207  

    19.    McCann KP, Robinson C, Sammons RL, Smith 
DA, Corfe BM (1996) Alanine germination 
receptors of Bacillus subtilis. Letts Appl 
Microbiol 23:290–294  

    20.    Liang L, Gai Y, Hu K, Liu G (2008) Te gerA 
operon is required for spore germination in 

Gaspar Banfalvi

banfalvi.gaspar@science.unideb.hu



213

Bacillus thuringiensis. Wei Sheng Wu Xue Bao 
48:281–286 (article in Chinese)  

    21.    Powell JF (1950) Factors affecting the germi-
nation of thick suspensions of Bacillus subtilis 
spores in  L -alanine solution. J Gen Microbiol 
4:330–338  

    22.    Pulvertaft RJV, Haynes JA (1951) Adenosine 
and spore germination; phasecontrast studies. 
J Gen Microbiol 5:657–663  

    23.    Powell JF, Strange RE (1953) Biochemical 
changes occurring during the germination of 
bacterial spores. Biochem J 54:205–209  

    24.   Murrell WG, Scott WJ (1958) The permeabil-
ity of bacterial spores to water. In: Proceedings 
of the 7th international congress of microbiol-
ogy, Stockholm, p. 26  

    25.    Powell JF (1957) Biochemical changes occur-
ring during spore germination in bacillus spe-
cies. J Appl Bacteriol 20:349–358  

    26.    Bhattacharya S, Sarkar N (1981) Study of 
deoxyribonucleic acid replication in permeable 
cells of Bacillus subtilis using mercurated nucle-
otide substrates. Biochemistry 20:3029–3034  

    27.    Woese C, Morowitz HJ (1958) Kinetics of the 
release of dipicolinic acid from spores of 
Bacillus subtilis. J Bacteriol 76:81–83  

    28.    Cutler RG, Evans JE (1966) Synchronization 
of bacteria by a stationary-phase method. 
J Bacteriol 91:469–476  

    29.    Maruyama Y, Yanagita T (1956) Physical 
methods for obtaining synchronous culture of 
 Escherichia coli . J Bacteriol 71:542–546  

   30.    Abbo FE, Pardee AB (1960) Synthesis of 
macromolecules in synchronously dividing 
bacteria. Biochim Biophys Acta 
39:473–485  

    31.    Lark KG, Lark C (1960) Changes during 
the division cycle in bacterial cell wall syn-
thesis, volume, and ability to concentrate 
free amino acids. Biochim Biophys Acta 
43:520–530  

    32.    Helmstetter CE, Uretz RB (1963) X-ray and 
ultraviolet sensitivity of synchronously dividing 
 Escherichia coli . Biophys J 3:35–47  

    33.    Helmstetter CE, Cummings DJ (1963) 
Bacterial synchronization by selection of cells 
at division. Proc Natl Acad Sci U S A 
50:767–774  

    34.    Lark KG, Maaloe O (1954) The induction of 
cellular and nuclear division in  Salmonella 
typhimurium  by means of temperature shift. 
Biochem Biophys Acta 15:345–356  

    35.    Ron EZ, Rozenhak S, Grossman N (1975) 
Synchronization of cell division in  Escherichia 
coli  by amino acid starvation: strain specifi city. 
J Bacteriol 123:374–376    

Synchronization of Bacillus subtilis Cells by Spore Germination and Outgrowth

banfalvi.gaspar@science.unideb.hu


