410 research outputs found
Low cost freshwater fish pickle using cheap citrus fruit (C. reticulata)
The juice extracted from a locally abundant cheap variety of citrus fruit namely, Citrus reticulata was utilized for pickling. The paper highlights the trials made to select the optimum concentrations of acetic acid and sodium chloride to be used along with the juice of C. reticulata so as to obtain the best, product. The product can be stored well at room temperature for six months
On the ice-storage characteristics of Catla catla and Labeo fimbriatus
The ice-storage characteristics of Catla catla and Labeo fimbriatus are reported. Muscle pH, moisture, total volatile nitrogen, alpha amino nitrogen and peroxide value and also the changes in total bacterial count are studied. C. catla and L. fimbriatus both could be stored in ice for 18 days
Liquid-gas phase transition in finite nuclei
In a finite temperature Thomas-Fermi framework, we calculate density
distributions of hot nuclei enclosed in a freeze-out volume of few times the
normal nuclear volume and then construct the caloric curve, with and without
inclusion of radial collective flow. In both cases, the calculated specific
heats show a peaked structure signalling a liquid-gas phase transition.
Without flow, the caloric curve indicates a continuous phase transition whereas
with inclusion of flow, the transition is very sharp. In the latter case, the
nucleus undergoes a shape change to a bubble from a diffuse sphere at the
transition temperature.Comment: Proc. of 6th Int. Conf. on N-N Collisions (Gatlinburg); Nuclear
Physics A (in press
Enhancement of Jc by Hf -Doping in the Superconductor MgB2: A Hyperfine Interaction Study
Measurements of the critical current density (Jc) by magnetization and the
upper critical field (Hc2) by magnetoresistance have been performed for
hafnium-doped MgB2. There has been a remarkable enhancement of Jc as compared
to that by ion irradiation without any appreciable decrease in Tc, which is
beneficial from the point of view of applications. The irreversibility line
extracted from Jc shows an upward shift. In addition, there has been an
increase in the upper critical field which indicates that Hf partially
substitutes for Mg. Hyperfine interaction parameters obtained from time
differential perturbed angular correlation (TDPAC) measurements revealed the
formation of HfB and HfB2 phases along with the substitution of Hf. A possible
explanation is given for the role of these species in the enhancement of Jc in
MgB2 superconductor
Exclusive light particle measurements for the system F + C at 96 MeV
Decay sequence of hot {31}^P nucleus has been investigated through
exclusive light charged particle measurements in coincidence with individual
evaporation residues using the reaction {19}^F (96 MeV) + {12}^C.
Information on the sequential decay chain have been extracted by confronting
the data with the predictions of the statistical model. It is observed from the
present analysis that such exclusive light charged particle data may be used as
a powerful tool to probe the decay sequence of the hot light compound systems.Comment: 13 pages, 8 figures, Physical Review C (in press
Neon ion Irradiation studies on MgB2 Superconductor
160 MeV Neon ion irradiation has been carried out on MgB2 polycrystalline
pellets at various doses. There has not been any significant change in Tc
except at the highest dose of 1x10^15 ions/cm^2. Increase in resistivity has
been noticed. Resistivity data has been fitted with Bloch-Gruneisen function
and the values of Debye temperature, residual resistivity and temperature
coefficient of resistivity have been extracted for irradiated as well as
unirradiated samples. The increase in the resistivity of irradiated samples has
been explained in the light of damage in the 3D pi bonding network of B.Comment: 15 pages, 3 figure
A minimal Beta Beam with high-Q ions to address CP violation in the leptonic sector
In this paper we consider a Beta Beam setup that tries to leverage at most
existing European facilities: i.e. a setup that takes advantage of facilities
at CERN to boost high-Q ions (8Li and 8B) aiming at a far detector located at L
= 732 Km in the Gran Sasso Underground Laboratory. The average neutrino energy
for 8Li and 8B ions boosted at \gamma ~ 100 is in the range E_\nu = [1,2] GeV,
high enough to use a large iron detector of the MINOS type at the far site. We
perform, then, a study of the neutrino and antineutrino fluxes needed to
measure a CP-violating phase delta in a significant part of the parameter
space. In particular, for theta_13 > 3 deg, if an antineutrino flux of 3 10^19
useful 8Li decays per year is achievable, we find that delta can be measured in
60% of the parameter space with 6 10^18 useful 8B decays per year.Comment: 19 pages, 10 figures, added references and corrected typo
Defects induced ferromagnetism in Mn doped ZnO
Single phase Mn doped (2 at %) ZnO samples have been synthesized by
solid-state reaction technique. Before the final sintering at 500 C, the mixed
powders have been milled for different milling periods (6, 24, 48 and 96
hours). The grain sizes of the samples are very close to each other (~ 32 \pm 4
nm). However, the defective state of the samples is different from each other
as manifested from the variation of magnetic properties and electrical
resistivity with milling time. All the samples have been found to be
ferromagnetic with clear hysteresis loops at room temperature. The maximum
value for saturation magnetization (0.11 {\mu}_B / Mn atom) was achieved for 96
hours milled sample. Electrical resistivity has been found to increase with
increasing milling time. The most resistive sample bears the largest saturation
magnetization. Variation of average positron lifetime with milling time bears a
close similarity with that of the saturation magnetization. This indicates the
key role played by open volume vacancy defects, presumably zinc vacancies near
grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain
optimum defect configuration favorable for ferromagnetism in this kind of
samples proper choice of milling period and annealing conditions is required.Comment: Accepted in Journal of Magnetism and Magnetic Material
Spin polarised nuclear matter and its application to neutron stars
An equation of state(EOS) of nuclear matter with explicit inclusion of a
spin-isospin dependent force is constructed from a finite range, momentum and
density dependent effective interaction. This EOS is found to be in good
agreement with those obtained from more sophisticated models for unpolarised
nuclear matter. Introducing spin degrees of freedom, it is found that at
density about 2.5 times the density of normal nuclear matter the neutron matter
undergoes a ferromagnetic transition. The maximum mass and the radius of the
neutron star agree favourably with the observations. Since finding quark matter
rather than spin polarised nuclear matter at the core of neutron stars is more
probable, the proposed EOS is also applied to the study of hybrid stars. It is
found using the bag model picture that one can in principle describe both the
mass and size as well as the surface magnetic field of hybrid stars
satisfactorily.Comment: 26 pages, 11 figures available on reques
Optimized Two-Baseline Beta-Beam Experiment
We propose a realistic Beta-Beam experiment with four source ions and two
baselines for the best possible sensitivity to theta_{13}, CP violation and
mass hierarchy. Neutrinos from 18Ne and 6He with Lorentz boost gamma=350 are
detected in a 500 kton water Cerenkov detector at a distance L=650 km (first
oscillation peak) from the source. Neutrinos from 8B and 8Li are detected in a
50 kton magnetized iron detector at a distance L=7000 km (magic baseline) from
the source. Since the decay ring requires a tilt angle of 34.5 degrees to send
the beam to the magic baseline, the far end of the ring has a maximum depth of
d=2132 m for magnetic field strength of 8.3 T, if one demands that the fraction
of ions that decay along the straight sections of the racetrack geometry decay
ring (called livetime) is 0.3. We alleviate this problem by proposing to trade
reduction of the livetime of the decay ring with the increase in the boost
factor of the ions, such that the number of events at the detector remains
almost the same. This allows to substantially reduce the maximum depth of the
decay ring at the far end, without significantly compromising the sensitivity
of the experiment to the oscillation parameters. We take 8B and 8Li with
gamma=390 and 656 respectively, as these are the largest possible boost factors
possible with the envisaged upgrades of the SPS at CERN. This allows us to
reduce d of the decay ring by a factor of 1.7 for 8.3 T magnetic field.
Increase of magnetic field to 15 T would further reduce d to 738 m only. We
study the sensitivity reach of this two baseline two storage ring Beta-Beam
experiment, and compare it with the corresponding reach of the other proposed
facilities.Comment: 17 pages, 3 eps figures. Minor changes, matches version accepted in
JHE
- …