169 research outputs found
Warm Compressor system Overview and status of the PIP-II cryogenic system
The Proton Improvement Plan-II (PIP-II) is a major upgrade to the Fermilab
accelerator complex, featuring a new 800-MeV Superconducting Radio-Frequency
(SRF) linear accelerator (Linac) powering the accelerator complex to provide
the world's most intense high-energy neutrino beam. The PIP-II Linac consists
of 23 SRF cryomodules operating at 2 K, 5 K, and 40 K temperature levels
supplied by a single helium cryoplant providing 2.5 kW of cooling capacity at
2.0 K. The PIP-II cryogenic system consists of two major systems: a helium
cryogenic plant and a cryogenic distribution system. The cryogenic plant
includes a refrigerator cold box, a warm compressor system, and helium storage,
recovery, and purification systems. The cryogenic distribution system includes
a distribution box, intermediate transfer line, and a tunnel transfer line
consisting of modular bayonet cans which supply and return cryogens to the
cryomodules. A turnaround can is located at the end of the Linac to turnaround
cryogenic flows. This paper describes the layout, design, and current status of
the PIP-II cryogenic system.Comment: 2023 Cryogenic Engineering Conference and International Cryogenic
Materials Conference (CEC/ICMC
Stereoscopic Polar Plume Reconstructions from Stereo/Secchi Images
We present stereoscopic reconstructions of the location and inclination of
polar plumes of two data sets based on the two simultaneously recorded images
taken by the EUVI telescopes in the SECCHI instrument package onboard the
\emph{STEREO (Solar TErrestrial RElations Observatory)} spacecraft. The ten
plumes investigated show a superradial expansion in the coronal hole in 3D
which is consistent with the 2D results. Their deviations from the local
meridian planes are rather small with an average of . By
comparing the reconstructed plumes with a dipole field with its axis along the
solar rotation axis, it is found that plumes are inclined more horizontally
than the dipole field. The lower the latitude is, the larger is the deviation
from the dipole field. The relationship between plumes and bright points has
been investigated and they are not always associated. For the first data set,
based on the 3D height of plumes and the electron density derived from
SUMER/\emph{SOHO} Si {\sc viii} line pair, we found that electron densities
along the plumes decrease with height above the solar surface. The temperature
obtained from the density scale height is 1.6 to 1.8 times larger than the
temperature obtained from Mg {\sc ix} line ratios. We attribute this
discrepancy to a deviation of the electron and the ion temperatures. Finally,
we have found that the outflow speeds studied in the O {\sc vi} line in the
plumes corrected by the angle between the line of sight and the plume
orientation are quite small with a maximum of 10 . It is
unlikely that plumes are a dominant contributor to the fast solar wind.Comment: 25 pages, 13 figure
Variant alleles of the CYP1B1 gene are associated with colorectal cancer susceptibility
<p>Abstract</p> <p>Background</p> <p>CYP1B1 is a P450 enzyme which is involved in the activation of pro-carcinogens to carcinogens as well as sex hormone metabolism. Because differences in the activity of the enzyme have been correlated with variant alleles of single nucleotide polymorphisms (SNPs), it represents an attractive candidate gene for studies into colorectal cancer susceptibility.</p> <p>Methods</p> <p>We genotyped 597 cancer patients and 597controls for three CYP1B1 SNPs, which have previously been shown to be associated with altered enzymatic activity. Using the three SNPs, eight different haplotypes were constructed. The haplotype frequencies were estimated in cases and controls and then compared. The odds ratio for each tumour type, associated with each haplotype was estimated, with reference to the most common haplotype observed in the controls.</p> <p>Results</p> <p>The three SNPs rs10012, rs1056827 and rs1056836 alone did not provide any significant evidence of association with colorectal cancer risk. Haplotypes of rs1056827 and rs10012 or rs1056827 and rs1056836 revealed an association with colorectal cancer which was significantly stronger in the homozygous carriers. One haplotype was under represented in the colorectal cancer patient group compared to the control population suggesting a protective effect.</p> <p>Conclusion</p> <p>Genetic variants within the CYP1B1 that are associated with altered function appear to influence susceptibility to a colorectal cancer in Poland. Three haplotypes were associated with altered cancer risk; one conferred protection and two were associated with an increased risk of disease. These observations should be confirmed in other populations.</p
Germline MSH2 and MLH1 mutational spectrum in HNPCC families from Poland and the Baltic States.
Peer reviewe
Water production in comet 81P/Wild 2 as determined by Herschel/HIFI
The high spectral resolution and sensitivity of Herschel/HIFI allows for the detection of multiple rotational water lines and accurate determinations of water production rates in comets. In this Letter we present HIFI observations of the fundamental 1(10)-1(01) (557 GHz) ortho and 1(11)-0(00) (1113 GHz) para rotational transitions of water in comet 81P/Wild 2 acquired in February 2010. We mapped the extent of the water line emission with five point scans. Line profiles are computed using excitation models which include excitation by collisions with electrons and neutrals and solar infrared radiation. We derive a mean water production rate of 1.0 x 10(28) molecules s(-1) at a heliocentric distance of 1.61 AU about 20 days before perihelion, in agreement with production rates measured from the ground using observations of the 18-cm OH lines. Furthermore, we constrain the electron density profile and gas kinetic temperature, and estimate the coma expansion velocity by fitting the water line shapes.</p
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence
We present a series of models for the plasma properties along open magnetic
flux tubes rooted in solar coronal holes, streamers, and active regions. These
models represent the first self-consistent solutions that combine: (1)
chromospheric heating driven by an empirically guided acoustic wave spectrum,
(2) coronal heating from Alfven waves that have been partially reflected, then
damped by anisotropic turbulent cascade, and (3) solar wind acceleration from
gradients of gas pressure, acoustic wave pressure, and Alfven wave pressure.
The only input parameters are the photospheric lower boundary conditions for
the waves and the radial dependence of the background magnetic field along the
flux tube. For a single choice for the photospheric wave properties, our models
produce a realistic range of slow and fast solar wind conditions by varying
only the coronal magnetic field. Specifically, a 2D model of coronal holes and
streamers at solar minimum reproduces the latitudinal bifurcation of slow and
fast streams seen by Ulysses. The radial gradient of the Alfven speed affects
where the waves are reflected and damped, and thus whether energy is deposited
below or above the Parker critical point. As predicted by earlier studies, a
larger coronal ``expansion factor'' gives rise to a slower and denser wind,
higher temperature at the coronal base, less intense Alfven waves at 1 AU, and
correlative trends for commonly measured ratios of ion charge states and
FIP-sensitive abundances that are in general agreement with observations. These
models offer supporting evidence for the idea that coronal heating and solar
wind acceleration (in open magnetic flux tubes) can occur as a result of wave
dissipation and turbulent cascade. (abridged abstract)Comment: 32 pages (emulateapj style), 18 figures, ApJ Supplement, in press (v.
171, August 2007
EQ-5D in Central and Eastern Europe : 2000-2015
Objective: Cost per quality-adjusted life year data are required for reimbursement decisions in many Central and Eastern European (CEE) countries. EQ-5D is by far the most commonly used instrument to generate utility values in CEE. This study aims to systematically review the literature on EQ-5D from eight CEE countries. Methods: An electronic database search was performed up to July 1, 2015 to identify original EQ-5D studies from the countries of interest. We analysed the use of EQ-5D with respect to clinical areas, methodological rigor, population norms and value sets. Results: We identified 143 studies providing 152 country-specific results with a total sample size of 81,619: Austria (n=11), Bulgaria (n=6), Czech Republic (n=18), Hungary (n=47), Poland (n=51), Romania (n=2), Slovakia (n=3) and Slovenia (n=14). Cardiovascular (20%), neurologic (16%), musculoskeletal (15%) and endocrine/nutritional/metabolic diseases (14%) were the most frequently studied clinical areas. Overall 112 (78%) of the studies reported EQ VAS results and 86 (60%) EQ-5D index scores, of which 27 (31%) did not specify the applied tariff. Hungary, Poland and Slovenia have population norms. Poland and Slovenia also have a national value set. Conclusions: Increasing use of EQ-5D is observed throughout CEE. The spread of health technology assessment activities in countries seems to be reflected in the number of EQ-5D studies. However, improvement in informed use and methodological quality of reporting is needed. In jurisdictions where no national value set is available, in order to ensure comparability we recommend to apply the most frequently used UK tariff. Regional collaboration between CEE countries should be strengthened
- …