2,615 research outputs found

    The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma

    Full text link
    Solar prominences are partially ionised plasmas displaying flows and oscillations. These oscillations show time and spatial damping and, commonly, have been explained in terms of magnetohydrodynamic (MHD) waves. We study the spatial damping of linear non-adiabatic MHD waves in a flowing partially ionised plasma, having prominence-like physical properties. We consider single fluid equations for a partially ionised hydrogen plasma including in the energy equation optically thin radiation, thermal conduction by electrons and neutrals, and heating. Keeping the frequency real and fixed, we have solved the obtained dispersion relations for the complex wavenumber, k, and have analysed the behaviour of the damping length, wavelength and the ratio of the damping length to the wavelength, versus period, for Alfven, fast, slow and thermal waves.Comment: 28 pages, 9 figure

    Periodicities in sunspot activity during solar cycle 23

    Full text link
    The data of sunspot numbers, sunspot areas and solar flare index during cycle 23 are analyzed to investigate the intermediate-term periodicities. Power spectral analysis has been performed separately for the data of the whole disk, northern and southern hemispheres of the Sun. Several significant midrange periodicities (\sim175, 133, 113, 104, 84, 63 days) are detected in sunspot activity. Most of the periodicities in sunspot numbers generally agree with those of sunspot areas during the solar cycle 23. The study reveals that the periodic variations in the northern and southern hemispheres of the Sun show a kind of asymmetrical behavior. Periodicities of \sim175 days and \sim133 days are highly significant in the sunspot data of northern hemisphere showing consistency with the findings of Lean (1990) during solar cycles 12-21. On the other hand, southern hemisphere shows a strong periodicity of about 85 days in terms of sunspot activity. The analysis of solar flare index data of the same time interval does not show any significant peak. The different periodic behavior of sunspot and flare activity can be understood in the light of hypothesis proposed by Ballester et al. (2002), which suggests that during cycle 23, the periodic emergence of magnetic flux partly takes place away from developed sunspot groups and hence may not necessarily increase the magnetic complexity of sunspot groups that leads to the generation of flares.Comment: 4 pages, 4 figure

    GUIs in the MIDAS environment

    Get PDF
    MIDAS (Munich Image Data Analysis System) is the image processing system developed at ESO for astronomical data reduction. MIDAS is used for off-line data reduction at ESO and many astronomical institutes all over Europe. In addition to a set of general commands, enabling to process and analyze images, catalogs, graphics and tables, MIDAS includes specialized packages dedicated to astronomical applications or to specific ESO instruments. Several graphical interfaces are available in the MIDAS environment: XHelp provides an interactive help facility, and XLong and XEchelle enable data reduction of long-slip and echelle spectra. GUI builders facilitate the development of interfaces. All ESO interfaces comply to the ESO User Interfaces Common Conventions which secures an identical look and feel for telescope operations, data analysis, and archives

    Maximal subgroups and PST-groups

    Get PDF
    A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19-25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versiosn of Kaplan's results, which enables a better understanding of the relationships between these classes

    Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases

    Full text link
    We prove tight entropic uncertainty relations for a large number of mutually unbiased measurements. In particular, we show that a bound derived from the result by Maassen and Uffink for 2 such measurements can in fact be tight for up to sqrt{d} measurements in mutually unbiased bases. We then show that using more mutually unbiased bases does not always lead to a better locking effect. We prove that the optimal bound for the accessible information using up to sqrt{d} specific mutually unbiased bases is log d/2, which is the same as can be achieved by using only two bases. Our result indicates that merely using mutually unbiased bases is not sufficient to achieve a strong locking effect, and we need to look for additional properties.Comment: 9 pages, RevTeX, v3: complete rewrite, new title, many new results, v4: minor changes, published versio

    Measuring Column Densities in Quasar Outflows: VLT Observations of QSO 2359-1241

    Full text link
    We present high resolution spectroscopic VLT observations of the outflow seen in QSO 2359-1241. These data contain absorption troughs from five resonance Fe II lines with a resolution of ~7 km/s and signal-to-noise ratio per resolution element of order 100. We use this unprecedented high quality data set to investigate the physical distribution of the material in front of the source, and by that determine the column densities of the absorbed troughs. We find that the apparent optical depth model gives a very poor fit to the data and greatly underestimates the column density measurements. Power-law distributions and partial covering models give much better fits with some advantage to power-law models, while both models yield similar column density estimates. The better fit of the power-law model solves a long standing problem plaguing the partial covering model when applied to large distance scale outflow: How to obtain a velocity dependent covering factor for an outflow situated at distances thousands of time greater than the size of the AGN emission source. This problem does not affect power-law models. Therefore, based on the better fit and plausibility of the physical model, we conclude that in QSO 2359-1241, the outflow covers the full extent of the emission source but in a non-homogeneous way.Comment: 27 pages, 6 figures, to appear on ApJ Jul 10. The full (online) version of figure 2 can be obtained here: http://www.phys.vt.edu/~arav/f2_online_version.p

    Beware of simple methods for structure-based virtual screening: the critical importance of broader comparisons

    Get PDF
    We discuss how data unbiasing and simple methods such as protein-ligand Interaction FingerPrint (IFP) can overestimate virtual screening performance. We also show that IFP is strongly outperformed by target-specific machine-learning scoring functions, which were not considered in a recent report concluding that simple methods were better than machine-learning scoring functions at virtual screening

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201

    Multiphase Plasma in Sub-Damped Lyman Alpha Systems: A Hidden Metal Reservoir

    Get PDF
    We present a VLT/UVES spectrum of a proximate sub-damped Lyman-alpha (sub-DLA) system at z=2.65618 toward the quasar Q0331-4505 (z_qso=2.6785+/-0.0030). Absorption lines of O I, Si II, Si III, Si IV, C II, C III, C IV, Fe II, Al II, and O VI are seen in the sub-DLA, which has a neutral hydrogen column density log N(H I)=19.82+/-0.05. The absorber is at a velocity of 1820+/-250 km/s from the quasar; however, its low metallicity [O/H]=-1.64+/-0.07, lack of partial coverage, lack of temporal variations between observations taken in 2003 and 2006, and non-detection of N V imply the absorber is not a genuine intrinsic system. By measuring the O VI column density and assuming equal metallicities in the neutral and ionized gas, we determine the column density of hot ionized hydrogen in this sub-DLA, and in two other sub-DLAs with O VI drawn from the literature. Coupling this with determinations of the typical amount of warm ionized hydrogen in sub-DLAs, we confirm that sub-DLAs are a more important metal reservoir than DLAs, in total comprising at least 6-22% of the metal budget at z~2.5.Comment: 5 pages, 3 color figures, accepted for publication in ApJ

    The Fluctuating Intergalactic Radiation Field at Redshifts z = 2.3-2.9 from He II and H I Absorption towards HE 2347-4342

    Full text link
    We provide an in-depth analysis of the He II and H I absorption in the intergalactic medium (IGM) at redshifts z = 2.3-2.9 toward HE 2347-4342, using spectra from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Ultraviolet-Visual Echelle Spectrograph (UVES) on the VLT telescope. Following up on our earlier study (Kriss et al. 2001, Science, 293, 1112), we focus here on two major topics: (1) small-scale variability (Delta z = 10^-3) in the ratio eta = N(He II)/N(H I); and (2) an observed correlation of high-eta absorbers (soft radiation fields) with voids in the (H I) Ly-alpha distribution. These effects may reflect fluctuations in the ionizing sources on scales of 1 Mpc, together with radiative transfer through a filamentary IGM whose opacity variations control the penetration of 1-5 ryd radiation over 30-40 Mpc distances. Owing to photon statistics and backgrounds, we can measure optical depths over the ranges 0.1 < tau(HeII) < 2.3 and 0.02 < tau(HI) < 3.9, and reliably determine values of eta = 4 tau(HeII)/tau(HI) over the range 0.1 to 460. Values of eta = 20-200 are consistent with models of photoionization by quasars with observed spectral indices alpha_s = 0-3. Values of eta > 200 may require additional contributions from starburst galaxies, heavily filtered quasar radiation, or density variations. Regions with eta < 30 may indicate the presence of local hard sources. We find that eta is higher in "void" regions, where H I is weak or undetected and 80% of the path length has eta > 100. These voids may be ionized by soft sources (dwarf starbursts) or by QSO radiation softened by escape from the AGN cores or transfer through the "cosmic web". The apparent differences in ionizing spectra may help to explain the 1.45 Gyr lag between the reionization epochs, z(HI) = 6.2 +/-0.2 and z(HeII) = 2.8 +/-0.2.Comment: 27 pages, 7 figures, to appear in Ap
    corecore