393 research outputs found

    Higgs Sector of the Minimal Left-Right Symmetric Model

    Get PDF
    We perform an exhaustive analysis of the most general Higgs sector of the minimal left-right symmetric model (MLRM). We find that the CP properties of the vacuum state are connected to the Higgs spectrum: if CP is broken spontaneously, the MLRM does not approach the Standard Model in the limit of a decoupling left-right symmetry breaking scale. Depending on the size of the CP phases scenarios with extra non-decoupling flavor-violating doublet Higgses or very light SU(2) triplet Higgses emerge, both of which are ruled out by phenomenology. For zero CP phases the non-standard Higgses decouple only if a very unnatural fine-tuning condition is fulfilled. We also discuss generalizations to a non-minimal Higgs sector.Comment: brief discussion of non-minimal Higgs sectors added, journal versio

    Spontaneous CP Violating Phase as The CKM Matrix Phase

    Full text link
    We propose that the CP violating phase in the CKM mixing matrix is identical to the CP phases responsible for the spontaneous CP violation in the Higgs potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is constructed to realize this idea. The CP violating phase does not vanish when all Higgs masses become large. There are flavor changing neutral current (FCNC) interactions mediated by neutral Higgs bosons at the tree level. However, unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms of the quark masses and CKM mixing angles. Implications for meson-anti-meson mixing, including recent data on DDˉD-\bar D mixing, and neutron electric dipole moment (EDM) are studied. We find that the neutral Higgs boson masses can be at the order of one hundred GeV. The neutron EDM can be close to the present experimental upper bound.Comment: 16 pages, RevTex. Several typos corrected, and one reference adde

    Calibration of Plastic Phoswich Detectors for Charged Particle Detection

    Full text link
    The response of an array of plastic phoswich detectors to ions of 1Z181\le Z\le 18 has been measured from E/AE/A=12 to 72 MeV. The detector response has been parameterized by a three parameter fit which includes both quenching and high energy delta-ray effects. The fits have a mean variation of 4%\le 4\% with respect to the data.Comment: 17 pages, 5 figure

    The C parameter distribution in e+e- annihilation

    Full text link
    We study perturbative and non-perturbative aspects of the distribution of the C parameter in e+e- annihilation using renormalon techniques. We perform an exact calculation of the characteristic function, corresponding to the C parameter differential cross section for a single off-shell gluon. We then concentrate on the two-jet region, derive the Borel representation of the Sudakov exponent in the large-beta_0 limit and compare the result to that of the thrust T. Analysing the exponent, we distinguish two ingredients: the jet function, depending on Q^2C, summarizing the effects of collinear radiation, and a function describing soft emission at large angles, with momenta of order QC. The former is the same as for the thrust upon scaling C by 1/6, whereas the latter is different. We verify that the rescaled C distribution coincides with that of 1-T to next-to-leading logarithmic accuracy, as predicted by Catani and Webber, and demonstrate that this relation breaks down beyond this order owing to soft radiation at large angles. The pattern of power corrections is also similar to that of the thrust: corrections appear as odd powers of Lambda/(QC). Based on the size of the renormalon ambiguity, however, the shape function is different: subleading power corrections for the C distribution appear to be significantly smaller than those for the thrust.Comment: 24 pages, Latex (using JHEP3.cls), 1 postscript figur

    Half-lives of neutron-rich Cd 128-130

    Get PDF
    R. Dunlop et al. ; 6 págs.; 7 figs.; 1 tab. ; Rapid CommunicationsThe β-decay half-lives of Cd128-130 have been measured with the newly commissioned GRIFFIN γ-ray spectrometer at the TRIUMF-ISAC facility. The time structures of the most intense γ rays emitted following the β decay were used to determine the half-lives of Cd128 and Cd130 to be T1/2=246.2(21) ms and T1/2=126(4) ms, respectively. The half-lives of the 3/2+ and 11/2- states of Cd129 were measured to be T1/2(3/2+)=157(8) ms and T1/2(11/2-)=147(3) ms. The half-lives of the Cd isotopes around the N=82 shell closure are an important ingredient in astrophysical simulations to derive the magnitude of the second r-process abundance peak in the A∼130 region. Our new results are compared with recent literature values and theoretical calculations. ©2016 American Physical SocietyThis work has been partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chairs Program. I.D. and R.C.-F. are supported by NSERC Discovery Grants SAPIN-2014-00028 and RGPAS 462257-2014. A.J. acknowledges financial support by the Spanish Ministerio de Ciencia e Innovación under contract FPA2011-29854-C04 and the Spanish Ministerio de Economía y Competitividad under contract FPA2014- 57196-C5-4-P. S.L.T acknowledges financial support from the U.S. National Science Foundation under contract NSF- 14-01574. E.P.-R. acknowledges financial support from the DGAPA-UNAM under the PASPA program. The GRIFFIN spectrometer was funded by the Canada Foundation for Innovation, TRIUMF, and the University of Guelph. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.Peer Reviewe

    Unitarity Triangles and the Search for New Physics

    Get PDF
    Assuming that the Kobayashi-Maskawa mechanism gives the dominant contribution to CP violation at low energies, we propose a novel way of testing the flavour sector of the Standard Model which has the potencial for discovering New Physics. Using 3 x 3 unitarity of the V_{CKM} matrix and choosing a complete set of rephasing invariant phases, we derive a set of exact relations in terms of measurable quantities, namely moduli of V_{CKM} and arguments of rephasing invariant quartets. These tests complement the usual analysis in the \rho, \eta plane and, if there is New Physics, may reveal its source.Comment: 20 pages, 7 figures, uses tcilate

    The CKM Matrix and The Unitarity Triangle: Another Look

    Get PDF
    The unitarity triangle can be determined by means of two measurements of its sides or angles. Assuming the same relative errors on the angles (α,β,γ)(\alpha,\beta,\gamma) and the sides (Rb,Rt)(R_b,R_t), we find that the pairs (γ,β)(\gamma,\beta) and (γ,Rb)(\gamma,R_b) are most efficient in determining (ϱˉ,ηˉ)(\bar\varrho,\bar\eta) that describe the apex of the unitarity triangle. They are followed by (α,β)(\alpha,\beta), (α,Rb)(\alpha,R_b), (Rt,β)(R_t,\beta), (Rt,Rb)(R_t,R_b) and (Rb,β)(R_b,\beta). As the set \vus, \vcb, RtR_t and β\beta appears to be the best candidate for the fundamental set of flavour violating parameters in the coming years, we show various constraints on the CKM matrix in the (Rt,β)(R_t,\beta) plane. Using the best available input we determine the universal unitarity triangle for models with minimal flavour violation (MFV) and compare it with the one in the Standard Model. We present allowed ranges for sin2β\sin 2\beta, sin2α\sin 2\alpha, γ\gamma, RbR_b, RtR_t and ΔMs\Delta M_s within the Standard Model and MFV models. We also update the allowed range for the function FttF_{tt} that parametrizes various MFV-models.Comment: "published version. few typos corrected, results unchanged

    On Neutrino Masses and a Low Breaking Scale of Left-Right Symmetry

    Full text link
    In left-right symmetric models (LRSM) the light neutrino masses arise from two sources: the seesaw mechanism and a VEV of an SU(2)L_L triplet. If the left-right symmetry breaking, vRv_R, is low, v_R\lsim15\TeV, the contributions to the light neutrino masses from both the seesaw mechanism and the triplet Yukawa couplings are expected to be well above the experimental bounds. We present a minimal LRSM with an additional U(1) symmetry in which the masses induced by the two sources are below the eV scale and the two-fold problem is solved. We further show that, if the U(1) symmetry is also responsible for the lepton flavor structure, the model yields a small mixing angle within the first two lepton generations.Comment: 18 pages references added published versio

    NLO contributions to BKKB \to K K^* Decays in the pQCD approach

    Full text link
    We calculate the important next-to-leading-order (NLO) contributions to the BKKB \to K K^* decays from the vertex corrections, the quark loops, and the magnetic penguins in the perturbative QCD (pQCD) factorization approach. The pQCD predictions for the CP-averaged branching ratios are Br(B+K+Kˉ0)3.2×107Br(B^+ \to K^+ \bar{K}^{*0}) \approx 3.2\times 10^{-7}, Br(B+Kˉ0K+)2.1×107Br(B^+ \to \bar{K}^0 {K}^{*+}) \approx 2.1\times 10^{-7}, Br(B^0/\ov{B}^0 \to K^0\bar{K}^{*0}+\bar{K}^0 K^{*0}) \approx 8.5\times 10^{-7}, Br(B^0/\ov{B}^0 \to K^+K^{*-} + K^-K^{*+}) \approx 1.3\times 10^{-7}, which agree well with both the experimental upper limits and the predictions based on the QCD factorization approach. Furthermore, the CP-violating asymmetries of the considered decay modes are also evaluated. The NLO pQCD predictions for \acp(B^+ \to K^+\bar{K}^{*0}) and \acp(B^+ \to K^{*+}\bar{K}^{0}) are \acp^{dir}(K^+\bar{K}^{*0})\approx -6.9 % and \acp^{dir}(K^{*+}\bar{K}^0)\approx 6.5 %.Comment: 29 pages,8 ps/eps figures, modified figures onl
    corecore