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Half-lives of neutron-rich 128–130Cd
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The β-decay half-lives of 128–130Cd have been measured with the newly commissioned GRIFFIN γ -ray
spectrometer at the TRIUMF-ISAC facility. The time structures of the most intense γ rays emitted following the
β decay were used to determine the half-lives of 128Cd and 130Cd to be T1/2 = 246.2 (21) ms and T1/2 = 126 (4) ms,
respectively. The half-lives of the 3/2+ and 11/2− states of 129Cd were measured to be T1/2(3/2+) = 157 (8) ms
and T1/2(11/2−) = 147 (3) ms. The half-lives of the Cd isotopes around the N = 82 shell closure are an important
ingredient in astrophysical simulations to derive the magnitude of the second r-process abundance peak in the
A ∼ 130 region. Our new results are compared with recent literature values and theoretical calculations.
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I. INTRODUCTION

The β-decay properties (half-lives and β-delayed neutron-
branching ratios) of nuclei below doubly magic 132

150Sn82 (i.e.,
N ≈ 82, Z < 50) are key input parameters for any astrophys-
ical r-process scenario because they play an important role
in the formation and shape of the second abundance peak at
A ∼ 130 [1]. This is despite the fact that the astrophysical site,
or sites, where rapid neutron capture nucleosynthesis [2–6]
takes place remain(s) elusive.

In both the high- and low-entropy hot neutrino-driven-wind
scenarios, the most important nuclei in this mass region are
the N = 82 isotones with Z = 40–50 because the enhanced
neutron binding energy compared with their isotopic neighbors
leads to a barrier for the r-process reaction flow toward heavier
masses. After the breakout of the N = 82 shell, isotopes
with N = 84, 86, and 88 also become important, such as
134,136,138Sn , 133,135Ag , 132,134,136Cd , 131,133Rh, and 130Pd [1].

At the so-called “waiting-point nuclei,” an accumulation
of r-process material occurs (under given astrophysical con-
ditions) and material can be transferred to the next elemental
chain via β decay. The half-lives of these waiting points thus
determine how much material is accumulated and, therefore,
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the amplitude and shape of the resulting r-process abundance
peaks after decay back to stability. The prominent r-process
abundance peaks at A ∼ 80, 130, and 195 correspond to
waiting-point isotopes at the closed neutron shells N = 50,
82, and 126 where, due to nuclear-shell-structure effects, the
reaction flow is hindered.

More neutron-rich “cold” r-process scenarios, such as
neutron-star mergers [7,8], drive the reaction path towards the
neutron dripline into regions that will only be partially acces-
sible to experiments at the new generation of radioactive-beam
facilities. Since most nuclei involved in r-process calculations
are currently experimentally inaccessible, one has to rely
heavily on the predictive power of theoretical models for the
β decay of these nuclei. The relative r-process abundances of
nuclei around neutron shell closures are particularly sensitive
to the half-lives, and it is thus critical to have models that can
accurately reproduce these decay properties.

In particular, shell-model calculations for the waiting-point
nuclei near the N = 82 neutron shell closure [9,10] have been
performed by adjusting the quenching of the Gamow–Teller
(GT) operator to reproduce the 130Cd half-life reported in
Ref. [11] and are known to yield systematically large values
for the half-lives of other nuclei in the region [10]. A new,
shorter, half-life for 130Cd as measured by the EURICA
collaboration [12] would resolve this discrepancy by scaling
the GT quenching by a constant factor for all nuclei in this
region.
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Distinguishing between these discrepant half-life measure-
ments for 130Cd [11,12] is thus of critical importance since
the as-yet-unknown half-lives of other N = 82 waiting-point
nuclei with 40 � Z � 44 play a key role for the reproduction
of the second abundance peak in r-process calculations.

A recent experimental campaign with the EURICA de-
tector [13] at RIKEN measured the β-decay half-lives of
110 neutron-rich isotopes between Rb and Sn; among them,
128–130Cd [12]. While the previously reported half-life value
for 128Cd of T1/2 = 280 (40) ms [14] was in agreement with
the much more precise value of T1/2 = 245 (5) ms reported in
Ref. [12], large discrepancies were found for 129,130Cd.

129Cd β decays from both a 3/2+ and an 11/2− state
but it is presently unknown which of the two states is
the ground state and which is the isomeric state. In an
experiment at ISOLDE, Arndt et al. [15,16] measured the
half-lives of both states by using β-delayed neutrons. They
reported T1/2 = 104 (6) ms for the “11/2− ground state”
and T1/2 = 242 (8) ms for the “3/2+ isomer” but gave no
explanation of how the ground state was assigned.

The ground-state-spin assignments for many neutron-rich
odd-A Cd isotopes have recently been confirmed via laser
spectroscopy [17]. The odd-A Cd isotopes 121,123,125,127Cd
have a well-established ground-state spin of 3/2+ but the exact
position of the 11/2− isomer is not known for 125,127Cd. Shell-
model calculations [18] suggest that this order is inverted at
129Cd compared with the lighter odd-A Cd isotopes; however,
there is no direct experimental evidence for this inversion. We
thus label the two states only according to their spin and parity.

The recent measurements of the EURICA collabora-
tion [18] did not resolve the issue of the ground-state spin-
parity assignment in 129Cd. However, the half-lives for the
3/2+ and 11/2− states were determined separately via the γ
transitions at 1423 and 1586 keV in the daughter nucleus to be
T1/2(3/2+) = 146 (8) ms, and via the γ -ray transitions at 359,
995, 1354, 1796, and 2156 keV to be T1/2(11/2−) = 155 (3)
ms. These results are in clear contradiction with the previous
measurements [15,16].

In the case of the 130Cd half-life, the value of 127 (2) ms
reported in Ref. [12] also differed from the previously accepted
value of 162 (7) ms [11] by more than 5σ . The measurement
of Ref. [11] was performed with the same technique using β-
delayed neutrons as the 129Cd measurements of Refs. [15,16].
In an earlier paper, the 130Cd half-life was reported as 195 (35)
ms [19].

In this paper we report an independent determination of the
half-lives of 128–130Cd which, in general, confirm the recent
EURICA results [12,18,20] but disagree with the previous
measurements [11,15,16]. We report an improved precision
for the 128Cd half-life, and revised half-lives for the two
β-decaying states of 129Cd based on more detailed γ -ray
spectroscopy.

II. EXPERIMENT

The half-lives of 128–130Cd were measured with the newly
commissioned GRIFFIN γ -ray spectrometer [21,22] at the
TRIUMF-ISAC facility [23]. Many of the nuclei in this
neutron-rich region below doubly magic 132Sn have compli-
cated decay chains, including significant β-delayed neutron-

emission branches, as well as the presence of β-decaying
isomeric states. A measurement of the temporal distribution
of characteristic γ rays emitted from the excited states of
the daughter nucleus following β decay of the parent isotope
is a powerful method to reduce the complex background
contributions to the measurement. This method requires the
use of a high-efficiency γ -ray spectrometer because of the low
production rates and short half-lives.

The isotopes of interest were produced by using a 500 MeV
proton beam with 9.8 μA intensity from the TRIUMF main
cyclotron incident on a UCx target. The ion-guide laser ion
source (IG-LIS) [24] was used to suppress surface-ionized
isobars such as In and Cs, while the neutral Cd atoms of
interest were extracted and selectively laser ionized in a
three-step-excitation scheme. The Cd isotopes of interest were
then accelerated to 28 keV, selected by a high-resolution
mass separator, and delivered to the GRIFFIN spectrometer.
GRIFFIN is comprised of 16 high-purity germanium (HPGe)
clover detectors [21,22]. The radioactive-ion beam (RIB) was
implanted into an aluminized mylar tape of the moving tape
collector at the mutual centers of SCEPTAR, an array of
20 thin plastic scintillators for tagging β particles [25], and
GRIFFIN. The longer-lived background activity, either from
isobaric contaminants in the beam or from daughters following
the decay of the Cd isotopes, could be removed by moving
the tape following a measurement. A typical cycle for the
128–130Cd runs consisted of a background measurement for
0.5 s, followed by a collection period (beam-on) with the
beam being implanted into the tape for 10 s, followed by
a collection period (beam-off) with the beam blocked by
the ISAC electrostatic beam kicker downstream of the mass
separator. The beam-off period consisted of a decay time of
typically two to three half-lives, the movement of the tape for
1 s to a shielded position outside of the array, and the start of
the new cycle with the background measurement.

The high efficiency of the GRIFFIN array coupled with
the SCEPTAR β detector allowed for the sensitive detection
of the γ rays following the β decay of interest. All of the
analyses reported here were performed by using add-back
algorithms in which all of the detected energy in a clover
within a 400 ns coincidence timing window was summed in
order to increase the photopeak efficiency of GRIFFIN, as
well as reduce the contribution of Compton background to the
γ -ray spectrum [21,22].

III. DATA ANALYSIS

The data were analyzed by using β-γ coincidences re-
quiring a β particle to be detected in SCEPTAR within a
coincidence window of 400 ns of a γ ray detected in GRIFFIN,
resulting in a strong suppression of room-background γ rays.
Cycles in which the RIB dropped out for a portion of the cycle
were rejected in order to increase the signal-to-background
ratio. In the case of 128Cd, this resulted in the removal of 30%
of the cycles, but only 1% of the total data.

A. 128Cd decay

Approximately 7 h of 128Cd data were collected with a beam
intensity of ∼1000 pps. The 857 keV [Iγ,rel = 95 (10)%] and
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FIG. 1. Activity of the 857 keV γ -ray photopeak in 128In.
The half-life of 128Cd from this transition is determined to be
245.8 (21) ms. The inset shows the gate on the 857 keV γ ray
as well as the strong 831.5 keV γ ray following the β decay of
128In. Note that the time represents the amount of time that has
elapsed since the start of a cycle. Background data were collected for
1000 ms before the beam was turned on. The beam was turned off
at 11.5 s.

the 925 keV transition [Iγ,rel = 12.4 (12)%] in the daughter
nucleus 128In [26] were used to determine the half-life. The
strongest transition at 247 keV (Iγ,rel = 100%) was not used
because it is emitted from a 23 (2) μs isomeric state. The
population of this isomer generally causes the emitted γ ray
to fall outside of the selected β-γ time window of 400 ns.

The data were grouped into 10 ms bins and fit with
an exponential plus constant background, as shown for the
857 keV γ ray in Fig. 1. Sources of systematic uncertainties
were investigated, including the re-binning of the data as well
as a “chop analysis” [27,28]. The chop analysis was performed
by changing the fit region that was used in order to investigate
rate-dependent effects. By starting the fit at a later time,
rate-dependent effects such as pileup [29] and dead time are
gradually reduced. If these effects are statistically significant,
they can be seen as a correlation between the half-life and time
of the first bin used. The measured half-life did not change
significantly as the first bin in the fit region was increased,
nor did the measured half-life change as the last bin in the fit
region was decreased.

The data were also re-binned into 20 and 40 ms per bin
with no statistically significant change in the fitted half-life.
The half-lives deduced from the 857 and 925 keV γ rays were
245.8 (21) and 257 (11) ms, respectively, while the fit to the
sum of these two γ rays resulted in a half-life of 246.2 (21)
ms. This result is consistent with the previous measurements of
245 (5) [12] and 280 (40) ms [14] and improves the precision
of the 128Cd half-life by a factor of 2.4.

B. 129Cd decay

Approximately 13 h of 129Cd data were collected with a
beam intensity of ∼250 pps. The beam of 129Cd delivered to
GRIFFIN consisted of both the ground state and the isomeric
state. A portion of the γ -ray spectrum is shown in Fig. 2, and
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FIG. 2. A portion of the β-gated γ -ray energy spectrum for the
129Cd experiment. The strongest peaks in the spectrum are labeled.
γ rays emitted following the β decay of 129Sn are labeled with * and
γ rays following the β decay of 128Sn are labeled with &.

the partial level scheme showing the important transitions for
the measurement of the half-life is depicted in Fig. 3.

The half-life of the 11/2− state was deduced in Ref. [18] by
using the summed time distribution of the γ transitions at 359,
995, 1354, 1796, and 2156 keV to be T1/2(11/2−) = 155 (3)
ms. Similarly, the half-life of the 3/2+ state [T1/2(3/2+) =
146 (8) ms] was measured by using the sum of the 1423 and
1586 keV γ rays because they are known to be directly fed by
the decay of the 3/2+ state in 129Cd.

The high statistics of our measurements with GRIFFIN
have made it possible to extract the half-life of the 11/2−
state from just the 359, 1796, and 2156 keV transitions,
yielding T1/2(11/2−) = 147 (3) ms. For the half-life of the
3/2+ state, the two transitions at 1423 and 1586 keV were used,
resulting in T1/2(3/2+) = 157 (8) ms (Fig. 4). A summary of
the half-lives measured from each of the individual γ rays is
given in Table I. The same sources of systematic uncertainties
as in the 128Cd analysis were also studied for 129Cd and

FIG. 3. A portion of the 129Cd decay scheme (adapted from
Ref. [18]) that shows the transitions relevant to the measurement
of the half-life (see text for details). The γ rays that were used in
the half-life analysis are shown in red. Note that the ordering of the
ground state and isomeric state in 129Cd is unknown; in this context
“x” can be <0 keV.
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FIG. 4. (a) Fitted activity of the 11/2− state using the 358.9,
1796.5, and 2155.6 keV γ rays. (b) Fitted activity of the 3/2+ state
using the 1422.9 and 1586.2 keV γ rays. Note that the time represents
the amount of time that has elapsed since the start of a cycle.

found to have negligible influence compared with the statistical
uncertainties.

Unlike Ref. [18], in this work we do not use the strong
995 keV γ ray in the analysis of the half-life of the 11/2−
state of 129Cd due to the previously observed feeding from the
3/2+ state of 129Cd via the 1222 keV transition in 129In [18].
We also do not include the 1354 keV γ ray in this analysis
because it is contaminated by a γ ray of the same energy
from the decay of the 611 (5) ms ground state of 129In [30].
Based on the relative intensities of the observed γ rays from
129In and 129Sn, we estimate that approximately 20% of the
total 1354 keV photopeak intensity in our experiment was
from 129In decay, which, if included, would bias the measured
half-life to longer values.

TABLE I. Half-life of 129Cd deduced from individual γ rays in
this work and the corresponding results from the measurements of
Ref. [20] (see text for details).

Eγ (keV) Half-life (ms) Parent state

This work Ref. [20] J π

358.9 148(3) 155.8(42) 11/2−

1796.5 143(6) 157.9(99) 11/2−

2155.6 136(12) 144(24) 11/2−

Weighted average 146.5(26) 155.8(38)
Summed value 147(3) 155(3)a

1422.9 158(8) 3/2+

1586.2 157(19) 3/2+

Weighted average 157.9(75)
Summed value 157(8) 146(8)

995.1b 151.8(23) 152.0(27) 11/2− + 3/2+

1354.2c 192(12) 158.6(81) Doublet

aThe value published in Ref. [20] includes the transitions at 995 and
1354 keV.
bγ ray was not used in the current analysis due to a potential
contamination between the 129Cd and 129Cdm decays.
cDoublet with a γ ray from the decay of 129In.

The half-lives for the 11/2− and 3/2+β-decaying states of
129Cd measured in this work agree with the general conclusion
of Ref. [18] that the half-lives of the two states are very
similar and do not differ by a factor of ≈2, as reported
in Ref. [15,16,31]. A direct comparison of the results from
the individual γ -ray transitions between this work and those
of Ref. [20] is given in Table I. For statistical reasons, in
Ref. [20] the counts in the 1423 and 1586 keV photopeaks
were summed, and the fit of the summed decay curve resulted
in the published value of 146 (8) ms [18] for the 3/2+ state
which is consistent with the value of 157 (8) ms reported here.
The weighted average of these two independent measurements
is 151.5 (57) ms. For the half-life of the 11/2− state we do not
average with Ref. [18] but recommend the value of 147 (3)
ms reported here due to the exclusion of contaminant γ -ray
photopeaks in the current work.

C. 130Cd decay

For 130Cd, approximately 38 h of data were collected with
a beam intensity of 15–30 pps. Figure 5 shows a portion of
the β-coincident γ -ray spectrum obtained during the 130Cd
experiment.

The 451.0 [Iγ,rel = 88.6 (36)%], 1170.3 [Iγ,rel =
20.0 (2)%], and 1669.2 keV (Iγ,rel = 100%) γ rays following
the decay of 130Cd [32] were used to measure the half-life,
yielding 123 (5), 138 (20), and 126 (6) ms, respectively.
The transition at 951 keV [Iγ,rel = 22.1 (33)%] [32] was not
used because it is a doublet with a γ ray from the decay
of 130In [33]. Fitting the sum of the time distributions of
these three γ rays yields a half-life of 126 (4) ms for the
decay of 130Cd (Fig. 6), in excellent agreement with the
value of 127 (2) ms recently reported in Ref. [12] and in
strong disagreement with the previous half-life measurement
of 162 (7) ms [11]. The study of systematic uncertainties
was performed as discussed above and did not reveal any
statistically significant effects on the measured half-life.
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FIG. 5. A portion of the β-gated γ -ray energy spectrum for the
130Cd experiment. The strongest peaks in the spectrum are labeled,
including the doublet at 951 keV. The three strong γ rays at 451, 1170,
and 1669 keV were used for the half-life analysis. γ rays following
the β decay of 130In are labeled with *.
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distributions. The half-life obtained from the fit is 126 (4) ms. Note
that the time represents the amount of time that has elapsed since the
start of a cycle.

IV. DISCUSSION AND CONCLUSION

The half-lives of 128Cd, of the 11/2− and the 3/2+ states
of 129Cd, and of the N = 82 isotope 130Cd were measured at
TRIUMF-ISAC by using the GRIFFIN γ -ray spectrometer.
The 128Cd half-life measured in this work of 246.2 (21) ms
is in excellent agreement with the previous measurement of
Ref. [12], but a factor of 2.4 more precise. The measured half-
lives of the two known β-decaying states in 129Cd, 147 (3) ms
for the 11/2− state and 157 (8) ms for the 3/2+ state, are found
to be similar, in agreement with the recent work of Ref. [18],
but in disagreement with the results of Refs. [15,16,31]. We
recommend the revised value for the 11/2− state reported here
rather than averaging with Ref. [18] due to the exclusion of
potential contaminants in the current analysis. Finally, the half-
life of the N = 82 waiting point nucleus 130Cd was measured to
be 126 (4) ms, in excellent agreement with the value of 127 (2)
ms reported in Ref. [12] but in strong disagreement with the
measurements of 162 (7) and 195 (35) ms from Refs. [11,19].

The confirmation of the shorter half-life for the N =
82 isotope 130Cd has significant implications for nuclear
structure calculations in this region, as well as for r-process
nucleosynthesis simulations. As shown in Fig. 7, the Fayans
energy-density functional (DF3) + continuum quasiparticle
random-phase approximation (CQRPA) model [34] and the
relativistic Hartree–Bogoliubov (RHB) + relativistic quasipar-
ticle random-phase approximation (RQRPA) [35] in general
do a reasonable job of describing the systematic trend of the
half-lives of neutron-rich Cd isotopes but slightly overestimate
the absolute values.

As discussed in Ref. [12], the systematic overestimate of the
half-lives for the N = 82 isotones can be traced to the scaling
of the Gamow–Teller quenching to the previously reported
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FIG. 7. Comparison between the calculated half-lives using the
DF3 + CQRPA [34] and RHB + RQRPA [35] models to the mea-
sured half-lives of 128Cd ,129Cd, and 130Cd. The measured half-lives
in this work are in good agreement with Ref. [12,18] but do not agree
with the previous measurements of Refs. [11,14–16,31]. Some error
bars are not visible in the plot because they are smaller than the data
points. Ha01: [11], Lo15: [12], Fo88: [14], Ar09: [16], Ta15 [18],
Kr86 [19].

longer half-life for 130Cd [11]. Increasing the GT quenching
factor from q = 0.66 to q = 0.75 in order to reproduce the
shorter half-life of 130Cd reported in Ref. [12] and confirmed
in the current work resolves this discrepancy. This directly
affects the predicted half-lives for the yet-unmeasured N =
82 isotones 127Rh ,126Ru, and 125Tc. As demonstrated in
Refs. [1,12], the decrease in the calculated half-lives for these
nuclei has a major influence on the shape of the rising wing of
the r-process abundance peak at A ∼ 130.
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