92 research outputs found

    Energy and complexity: new ways forward

    Get PDF
    The purpose of this paper is to review the application of complexity science methods in understanding energy systems and system change. The challenge of moving to sustainable energy systems which provide secure, affordable and low-carbon energy services requires the application of methods which recognise the complexity of energy systems in relation to social, technological, economic and environmental aspects. Energy systems consist of many actors, interacting through networks, leading to emergent properties and adaptive and learning processes. Insights on these type of phenomena have been investigated in other contexts by complex systems theory. However, these insights are only recently beginning to be applied to understanding energy systems and systems transitions. The paper discusses the aspects of energy systems (in terms of technologies, ecosystems, users, institutions, business models) that lend themselves to the application of complexity science and its characteristics of emergence and coevolution. Complex-systems modelling differs from standard (e.g. economic) modelling and offers capabilities beyond those of conventional models, yet these methods are only beginning to realize anything like their full potential to address the most critical energy challenges. In particular there is significant potential for progress in understanding those challenges that reside at the interface of technology and behaviour. Some of the computational methods that are currently available are reviewed: agent-based and network modelling. The advantages and limitations of these modelling techniques are discussed. Finally, the paper considers the emerging themes of transport, energy behaviour and physical infrastructure systems in recent research from complex-systems energy modelling. Although complexity science is not well understood by practitioners in the energy domain (and is often difficult to communicate), models can be used to aid decision-making at multiple levels e.g. national and local, and to aid understanding and allow decision making. The techniques and tools of complexity science, therefore, offer a powerful means of understanding the complex decision-making processes that are needed to realise a low-carbon energy system. We conclude with recommendations for future areas of research and application

    Low carbon infrastructure investment: extending business models for sustainability

    Get PDF
    Investment in infrastructure is recognized as a key enabler of economic prosperity, but it is also important for addressing social and environmental challenges, including climate change mitigation and addressing fuel poverty. The UK Government Strategy Investing in Britain’s Future argues that significant investment in “resilient, cost effective and sustainable energy supplies” is needed to meet these challenges. However, current methods of assessing the costs and benefits of infrastructure investment, and the subsequent design of business models needed to deliver this investment, often prioritise partial economic gains over social and environmental objectives. This paper extends the business model canvas approach to allow designing business models and evaluation methods that can incorporate social and environmental value streams and propositions as well as economic values in order to facilitate genuinely sustainable infrastructure investment. It demonstrates the usefulness of this extension through two case studies of the development of smart grids for electricity distribution and local heat delivery networks in the UK. Smart grids are essential for maintaining the security and reliability of electricity systems whilst incorporating increasing amounts of low carbon generation in distribution networks. District heat networks can facilitate the efficient supply of low carbon heat. However, both will require significant levels of investment, co-ordination between public, private and regulatory actors, and will deliver a range of economic, social and environmental costs and benefits to these actors. Drawing on empirical interviews with local actors involved in smart grid and heat network developments, and recent work on valuation and business model canvas analysis, the paper challenges the traditional view of a business model as only creating one form of value. Accounting for multiple types of value helps to identify business models that are more likely to achieve the environmental and social goals of infrastructure transformation and opens the door for new actors. Finally, the paper introduces an approach to complex systems modelling of infrastructure investment decisions to take into account the range of actors and the diversity of motivations of these actors

    A complexity approach to defining urban energy systems

    Get PDF
    Urban energy systems have been commonly considered to be socio-technical systems within the boundaries of an urban area. However, recent literature challenges this notion in that it urges researchers to look at the wider interactions and influences of urban energy systems wherein the socio-technical sphere is expanded to political, environmental and economic realms as well. In addition to the inter-sectoral linkages, the diverse agents and multilevel governance trends of energy sustainability in the dynamic environment of cities make the urban energy landscape a complex one. There is a strong case then for establishing a new conceptualisation of urban energy systems that builds upon these contemporary understandings of such systems. We argue that the complex systems approach can be suitable for this. In this paper, we propose a pilot framework for understanding urban energy systems using complex systems theory as an integrating plane. We review the multiple streams of urban energy literature to identify the contemporary discussions and construct this framework that can serve as a common ontological understanding for the different scholarships studying urban energy systems. We conclude the paper by highlighting the ways in which the framework can serve some of the relevant communities

    Realising local government visions for developing district heating: experiences from a learning country

    Get PDF
    District heating (DH) has an important role to play in enabling cities to transition to low-carbon heating. Although schemes are commonplace in some countries, in ‘learning countries’ where building-level technologies make up the majority of heating systems there are numerous barriers to introducing DH. Local governments are seen as key actors in helping to create a ‘shared vision’ for DH amongst stakeholders. This study uses interviews with stakeholders from a range of sectors in the UK (an example of a learning country) to examine the visions of local actors for developing DH and the types of national policy that would support local implementation of these visions. The analysis shows that in engaging with DH development local governments seek multiple types of value. Realising this value will most likely happen by taking a long-term, planned approach to development. In contrast, national government policy is geared towards techno-economic criteria and may lead to only a minority of potential sites being developed, without realisation of wider social or environmental benefits aligned to local visions. The work highlights the importance of local strategic planning, enabled by aligned national policy, in realising the full economic, environmental and social benefits of DH

    Enabling and constraining migration: the multiscalar management of temporary, skilled, international migration of English professional cricketers

    Get PDF
    This article progresses debates about how the process of international migration is operationalized. With a focus on the geographical concept of scale this article explores how individuals, organizations and policies interact to determine the characteristics of a migration flow. Using a case study of the temporary migration of English professional cricketers moving seasonally to Australia, it is revealed that there is a complex nexus of actors and institutions at the micro-, meso- and macro-scales that influence migration and can have contradictory impacts on migratory activity. Drawing on interviews with current and former English professional cricketers and a wide range of intermediaries it is shown how migration can both be enabled and constrained by different individuals and institutions in the home and destination context. The article contends that a multi-scalar approach is vital to more fully understand how migration flows are operationalized. The findings are pertinent to wider academic debates on the enablement, constraint and growing regulation of sports labour migration and skilled migration more broadly

    Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks

    Get PDF
    The potential contribution of local energy infrastructure – such as heat networks – to the transition to a low carbon economy is increasingly recognised in international, national and municipal policy. Creating the policy environment to foster the scaling up of local energy infrastructure is, however, still challenging; despite national policy action and local authority interest the growth of heat networks in UK cities remains slow. Technoeconomic energy system models commonly used to inform policy are not designed to address institutional and governance barriers. We present an agent-based model of heat network development in UK cities in which policy interventions aimed at the institutional and governance barriers faced by diverse actors can be explored. Three types of project instigators are included – municipal, commercial and community – which have distinct decision heuristics and capabilities and follow a multi-stage development process. Scenarios of policy interventions developed in a companion modelling approach indicate that the effect of interventions differs between actors depending on their capabilities. Successful interventions account for the specific motivations and capabilities of different actors, provide a portfolio of support along the development process and recognise the important strategic role of local authorities in supporting low carbon energy infrastructure
    • 

    corecore