96 research outputs found

    Perceiving Animacy in Own-and Other-Species Faces

    Get PDF
    Though artificial faces of various kinds are rapidly becoming more and more life-like due to advances in graphics technology (Suwajanakorn et al., 2015; Booth et al., 2017), observers can typically distinguish real faces from artificial faces. In general, face recognition is tuned to experience such that expert-level processing is most evident for faces that we encounter frequently in our visual world, but the extent to which face animacy perception is also tuned to in-group vs. out-group categories remains an open question. In the current study, we chose to examine how the perception of animacy in human faces and dog faces was affected by face inversion and the duration of face images presented to adult observers. We hypothesized that the impact of these manipulations may differ as a function of species category, indicating that face animacy perception is tuned for in-group faces. Briefly, we found evidence of such a differential impact, suggesting either that distinct mechanisms are used to evaluate the “life” in a face for in-group and out-group faces, or that the efficiency of a common mechanism varies substantially as a function of visual expertise

    Visual adaptation of the perception of “life”: Animacy is a basic perceptual dimension of faces

    Get PDF
    One critical component of understanding another’s mind is the perception of “life” in a face. However, little is known about the cognitive and neural mechanisms underlying this perception of animacy. Here, using a visual adaptation paradigm, we ask whether face animacy is (1) a basic dimension of face perception and (2) supported by a common neural mechanism across distinct face categories defined by age and species. Observers rated the perceived animacy of adult human faces before and after adaptation to (1) adult faces, (2) child faces, and (3) dog faces. When testing the perception of animacy in human faces, we found significant adaptation to both adult and child faces, but not dog faces. We did, however, find significant adaptation when morphed dog images and dog adaptors were used. Thus, animacy perception in faces appears to be a basic dimension of face perception that is species specific but not constrained by age categories.Simons Foundatio

    Personal Familiarity Influences the Processing of Upright and Inverted Faces in Infants

    Get PDF
    Infant face processing becomes more selective during the first year of life as a function of varying experience with distinct face categories defined by species, race, and age. Given that any individual face belongs to many such categories (e.g. A young Caucasian man's face) we asked how the neural selectivity for one aspect of facial appearance was affected by category membership along another dimension of variability. 6-month-old infants were shown upright and inverted pictures of either their own mother or a stranger while event-related potentials (ERPs) were recorded. We found that the amplitude of the P400 (a face-sensitive ERP component) was only sensitive to the orientation of the mother's face, suggesting that “tuning” of the neural response to faces is realized jointly across multiple dimensions of face appearance

    The Effect of Real-World Personal Familiarity on the Speed of Face Information Processing

    Get PDF
    Background. Previous studies have explored the effects of familiarity on various kinds of visual face judgments, yet the role of familiarity in face processing is not fully understood. Across different face judgments and stimulus sets, the data is equivocal as to whether or not familiarity impacts recognition processes. Methodology/Principal Findings. Here, we examine the effect of real-world personal familiarity in three simple delayed-match-to-sample tasks in which subjects were required to match faces on the basis of orientation (upright v. inverted), gender and identity. We find that subjects had a significant speed advantage with familiar faces in all three tasks, with large effects for the gender and identity matching tasks. Conclusion/Significance. Our data indicates that real-world experience with a face exerts a powerful influence on face processing in tasks where identity information is irrelevant, even in tasks that could in principle be solved via low-level cues. These results underscore the importance of experience in shaping visual recognition processes

    Practices participating in a dental PBRN have substantial and advantageous diversity even though as a group they have much in common with dentists at large

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Practice-based research networks offer important opportunities to move recent advances into routine clinical practice. If their findings are not only generalizable to dental practices at large, but can also elucidate how practice characteristics are related to treatment outcome, their importance is even further elevated. Our objective was to determine whether we met a key objective for The Dental Practice-Based Research Network (DPBRN): to recruit a diverse range of practitioner-investigators interested in doing DPBRN studies.</p> <p>Methods</p> <p>DPBRN participants completed an enrollment questionnaire about their practices and themselves. To date, more than 1100 practitioners from the five participating regions have completed the questionnaire. The regions consist of: Alabama/Mississippi, Florida/Georgia, Minnesota, Permanente Dental Associates, and Scandinavia (Denmark, Norway, and Sweden). We tested the hypothesis that there are statistically significant differences in key characteristics among DPBRN practices, based on responses from dentists who participated in DPBRN's first network-wide study (n = 546).</p> <p>Results</p> <p>There were statistically significant, substantive regional differences among DPBRN-participating dentists, their practices, and their patient populations.</p> <p>Conclusion</p> <p>Although as a group, participants have much in common with practices at large; their substantial diversity offers important advantages, such as being able to evaluate how practice differences may affect treatment outcomes, while simultaneously offering generalizability to dentists at large. This should help foster knowledge transfer in both the research-to-practice and practice-to-research directions.</p

    The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview

    Get PDF
    Aziz Sheikh and colleagues report the findings of their systematic overview that assessed the impact of eHealth solutions on the quality and safety of health care

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution
    corecore