47 research outputs found

    ToxGen: An improved reference database for the identification of type B-trichothecene genotypes in Fusarium

    Get PDF
    Type B trichothecenes, which pose a serious hazard to consumer health, occur worldwide in grains. These mycotoxins are produced mainly by three different trichothecene genotypes/chemotypes: 3ADON (3-acetyldeoxynivalenol), 15ADON (15-acetyldeoxynivalenol) and NIV (nivalenol), named after these three major mycotoxin compounds. Correct identification of these genotypes is elementary for all studies relating to population surveys, fungal ecology and mycotoxicology. Trichothecene producers exhibit enormous strain-dependent chemical diversity, which may result in variation in levels of the genotype´s determining toxin and in the production of low to high amounts of atypical compounds. New high-throughput DNA-sequencing technologies promise to boost the diagnostics of mycotoxin genotypes. However, this requires a reference database containing a satisfactory taxonomic sampling of sequences showing high correlation to actually produced chemotypes. We believe that one of the most pressing current challenges of such a database is the linking of molecular identification with chemical diversity of the strains, as well as other metadata. In this study, we use the Tri12 gene involved in mycotoxin biosynthesis for identification of Tri genotypes through sequence comparison. Tri12 sequences from a range of geographically diverse fungal strains comprising 22 Fusarium species were stored in the ToxGen database, which covers descriptive and up-to-date annotations such as indication on Tri genotype and chemotype of the strains, chemical diversity, information on trichothecene-inducing host, substrate or media, geographical locality, and most recent taxonomic affiliations. The present initiative bridges the gap between the demands of comprehensive studies on trichothecene producers and the existing nucleotide sequence databases, which lack toxicological and other auxiliary data. We invite researchers working in the fields of fungal taxonomy, epidemiology and mycotoxicology to join the freely available annotation effort.Fil: Kulik, Tomasz. Uniwersytet Warminsko-mazurski W Olsztynie;Fil: Abarenkov, Kessy. University Of Tartu.; EstoniaFil: Busko, Maciej. Poznań University of Life Sciences; PoloniaFil: Bilska, Katarzyna. University of Warmia and Mazury; PoloniaFil: van Diepeningen, Anne D.. University of Amsterdam; Países BajosFil: Ostrowska-Kolodziejczak, Anna. Poznań University of Life Science; PoloniaFil: Krawczyk, Katarzyna. University of Warmia and Mazur; PoloniaFil: Brankovics, Balázs. CBS-KNAW Fungal Biodiversity Centre; Países Bajos. University of Amsterdam; Países BajosFil: Stenglein, Sebastian Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnolológico Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología. Laboratorio de Biología Funcional y Biotecnología; ArgentinaFil: Sawicki, Jakub. University of Warmia and Mazury; PoloniaFil: Perkowski, Juliusz. Poznań University of Life Sciences; Poloni

    First steps towards mitochondrial pan-genomics: detailed analysis of Fusarium graminearum mitogenomes

    Get PDF
    There is a gradual shift from representing a species’ genome by a single reference genome sequence to a pan-genome representation. Pan-genomes are the abstract representations of the genomes of all the strains that are present in the population or species. In this study, we employed a pan-genomic approach to analyze the intraspecific mitochondrial genome diversity of Fusarium graminearum. We present an improved reference mitochondrial genome for F. graminearum with an intron-exon annotation that was verified using RNA-seq data. Each of the 24 studied isolates had a distinct mitochondrial sequence. Length variation in the F. graminearum mitogenome was found to be largely due to variation of intron regions (99.98%). The “intronless” mitogenome length was found to be quite stable and could be informative when comparing species. The coding regions showed high conservation, while the variability of intergenic regions was highest. However, the most important variable parts are the intron regions, because they contain approximately half of the variable sites, make up more than half of the mitogenome, and show presence/absence variation. Furthermore, our analyses show that the mitogenome of F. graminearum is recombining, as was previously shown in F. oxysporum, indicating that mitogenome recombination is a common phenomenon in Fusarium. The majority of mitochondrial introns in F. graminearum belongs to group I introns, which are associated with homing endonuclease genes (HEGs). Mitochondrial introns containing HE genes may spread within populations through homing, where the endonuclease recognizes and cleaves the recognition site in the target gene. After cleavage of the “host” gene, it is replaced by the gene copy containing the intron with HEG. We propose to use introns unique to a population for tracking the spread of the given population, because introns can spread through vertical inheritance, recombination as well as via horizontal transfer. We demonstrate how pooled sequencing of strains can be used for mining mitogenome data. The usage of pooled sequencing offers a scalable solution for population analysis and for species level comparisons studies. This study may serve as a basis for future mitochondrial genome variability studies and representations

    FgPex3, a Peroxisome Biogenesis Factor, Is Involved in Regulating Vegetative Growth, Conidiation, Sexual Development, and Virulence in Fusarium graminearum

    Get PDF
    Peroxisomes are involved in a wide range of important cellular functions. Here, the role of the peroxisomal membrane protein PEX3 in the plant-pathogen and mycotoxin producer Fusarium graminearum was studied using knock-out and complemented strains. To fluorescently label peroxisomes’ punctate structures, GFP and RFP fusions with the PTS1 and PTS2 localization signal were transformed into the wild type PH- 1 and 1FgPex3 knock-out strains. The GFP and RFP transformants in the 1FgPex3 background showed a diffuse fluorescence pattern across the cytoplasm suggesting the absence of mature peroxisomes. The 1FgPex3 strain showed a minor, non-significant reduction in growth on various sugar carbon sources. In contrast, deletion of FgPex3 affected fatty acid b-oxidation in F. graminearum and significantly reduced the utilization of fatty acids. Furthermore, the 1FgPex3 mutant was sensitive to osmotic stressorsas well as to cell wall-damaging agents. Reactive oxygen species (ROS) levels in the mutant had increased significantly, which may be linked to the reduced longevity of cultured strains. The mutant also showed reduced production of conidiospores, while sexual reproduction was completely impaired. The pathogenicity of 1FgPex3, especially during the process of systemic infection, was strongly reduced on both tomato and on wheat, while to production of deoxynivalenol (DON), an important factor for virulence, appeared to be unaffected

    Genomic Understanding of an Infectious Brain Disease from the Desert

    Get PDF
    Rhinocladiella mackenziei accounts for the majority of fungal brain infections in the Middle East, and is restricted to the arid climate zone between Saudi Arabia and Pakistan. Neurotropic dissemination caused by this fungus has been reported in immunocompromised, but also immunocompetent individuals. If untreated, the infection is fatal. Outside of humans, the environmental niche of R. mackenziei is unknown, and the fungus has been only cultured from brain biopsies. In this paper, we describe the whole-genome resequencing of two R. mackenziei strains from patients in Saudi Arabia and Qatar. We assessed intraspecies variation and genetic signatures to uncover the genomic basis of the pathogenesis, and potential niche adaptations. We found that the duplicated genes (paralogs) are more susceptible to accumulating significant mutations. Comparative genomics with other filamentous ascomycetes revealed a diverse arsenal of genes likely engaged in pathogenicity, such as the degradation of aromatic compounds and iron acquisition. In addition, intracellular accumulation of trehalose and choline suggests possible adaptations to the conditions of an arid climate region. Specifically, protein family contractions were found, including short-chain dehydrogenase/reductase SDR, the cytochrome P450 (CYP) (E-class), and the G-protein b WD-40 repeat. Gene composition and metabolic potential indicate extremotolerance and hydrocarbon assimilation, suggesting a possible environmental habitat of oil-polluted desert soilinfo:eu-repo/semantics/publishedVersio

    Recent Asian origin of chytrid fungi causing global amphibian declines

    Get PDF
    Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide

    GCPSR

    No full text
    Perl scripts for the genealogical concordance phylogenetic species recognition metho

    Return of the mitochondrial DNA: Case study of mitochondrial genome evolution in the genus Fusarium

    No full text
    Mitochondrial DNA played a prominent role in the fields of population genetics, systematics and evolutionary biology, due to its favorable characteristics, such as, uniparental inheritance, fast evolution and easy accessibility. However, the mitochondrial sequences have been mostly neglected in fungi since the initiation of the barcoding of life project, due to technical difficulties. This shifted the focus in fungal systematics and phylogenetics from the mitochondrion to the nuclear rDNA repeat region and single copy nuclear housekeeping genes. The combination of whole genome sequencing and new bioinformatics software, such as GRAbB (introduced in this thesis), overcome these difficulties, and pave the way for large scale comparative mitochondrial genomics as an important part of evolutionary studies. The work presented in this thesis demonstrates that large numbers of strains can be compared for a specific region (the mitogenome in our case) by using the selective assembly approach, that introns and homing endonuclease genes play an important role in the mitochondrial genome evolution, and that comparative mitochondrial genome analysis can lead to new insights into our understanding of the biology and evolutionary history of the organism. Such insights are the cryptic sexual or parasexual cycle in F. oxysproum, and that horizontal transfer has played an important role in the evolutionary history of F. fujikuroi & F. oxysporum species complexes, which should be taken into consideration when studying individual gene genealogies within these groups

    The complete mitogenome of Fusarium gerlachii

    No full text
    Abstract The structure of the Fusarium gerlachii mitogenome is similar to that of closely related Fusarium graminearum; it has a total length of 93,428 bp, the base composition of the genome is: A (35.3%), T (32.8%), C (14.7%) and G (17.2%). The mitogenome contains 13 protein-coding genes, 2 ribosomal RNA (rRNA) and 28 transfer RNA (tRNA) genes. The tRNA genes range in size from 62 bp to 88 bp. The gene order is identical to that of the other Fusarium mitogenomes
    corecore