
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Return of the mitochondrial DNA
Case study of mitochondrial genome evolution in the genus Fusarium
Brankovics, Balázs

Publication date
2018
Document Version
Other version
License
Other

Link to publication

Citation for published version (APA):
Brankovics, B. (2018). Return of the mitochondrial DNA: Case study of mitochondrial genome
evolution in the genus Fusarium. [Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/return-of-the-mitochondrial-dna(4b363285-4e72-48a1-bf9b-e55b80801aee).html


2

Chapter 2

GRAbB: Selective genome assembly

This chapter was published as:

B. Brankovics, H. Zhang, A.D. van Diepeningen, T.A.J. van der Lee,
C. Waalwijk, and G.S. de Hoog. (2016) GRAbB: Selective assembly of
genomic regions, a new niche for genomic research. PLoS Computational
Biology, 12(6):e1004753. DOI: 10.1371/journal.pcbi.1004753

Authors’ contributions: BB designed & developed the software package. BB, ADD,
TAJL & CW designed the test cases. BB carried out the analysis. BB wrote the first
draft. All authors (BB, HZ, ADD, TAJL, CW and GSH) helped shaping the manuscript.
All authors approved the final version of the manuscript.

19

https://doi.org/10.1371/journal.pcbi.1004753


2

Chapter 2. GRAbB: Selective genome assembly

Abstract

GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to
assemble specific genomic regions from NGS data. This approach is especially useful when
dealing with multi copy regions, such as mitochondrial genomes and the rDNA region
(repeats), parts of the genome that are often neglected or poorly assembled, although
they contain interesting information from phylogenetic or epidemiologic perspectives, but
also single copy regions can be assembled. The program is capable of targeting multiple
regions within a single run. Furthermore, GRAbB can be used to extract specific loci
from NGS data, based on homology, like sequences that are used for barcoding. To make
the assembly specific, a known part of the region, such as the sequence of a PCR amplicon
or a homologous sequence from a related species must be specified. By assembling only
the region of interest, the assembly process is computationally much less demanding and
may lead to assemblies of better quality. In this study the different applications and
functionalities of the program are demonstrated such as: exhaustive assembly (rDNA
region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1,
RPB2 and TEF1a), as well as, extracting multiple regions within a single run. The
program is also compared with MITObim, which is meant for the exhaustive assembly of
a single target based on a similar query sequence. GRAbB is shown to be more efficient
than MITObim in terms of speed, memory and disk usage. The other functionalities
(handling multiple targets simultaneously and extracting homologous regions) of the new
program are not matched by other programs. The program is available with explanatory
documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested
on Ubuntu 12.04 and 14.04. Furthermore, GRAbB is available as a docker repository:
brankovics/grabb.

20

https://github.com/b-brankovics/grabb


2

Introduction

High throughput sequencing of whole genomes is becoming routine due to the advances
in sequencing technologies and the reduction of the costs involved. Nowadays, more
and more research groups are producing whole genome and/or transcriptome sequencing
datasets that are made accessible for the research community.

However, in many studies not all the produced data are used effectively and most effort
is dedicated to the nuclear genome. In cases where an assembly is available, the quality
of some regions of interest may be poor due to the fact that most of the whole genome
assembly programs use global optimization, which may result in suboptimal local assem-
blies. This is often the case with the genomes of organelles such as the mitochondrion.
Mitogenome (mitochondrial genome) and ribosomal DNA region (18S rRNA - ITS1 - 5.8S
rRNA - ITS2 - 28S rRNA – IGS) are generally not completely assembled, even when there
is sufficient information in the NGS data [1]. These regions contain loci that are predom-
inantly used for phylogenetic comparisons and species identification. Furthermore, there
is no program that promises to extract barcoding loci form NGS reads.

The time and computational power required for assembling a specific region of the
genome is less than that required for assembling the entire genome, while the quality
of the assembled sequences may improve. Few resources exist to examine regions other
than the nuclear genome. So far there is only one program, MITObim, which selectively
assembles organellar genomes, and was developed for the mitogenome [1]. While other
programs are aimed at re-assembly to improve an existing assembly [2] or at closing
gaps [3], MITObim is designed to use the sequence of a related species as a reference for
the assembly until either one of two completion criteria is met: i) a maximum number of
iterations specified at invocation is reached, or ii) no new reads are found.

Here, we present GRAbB (Genomic Region Assembly by Baiting), a new versatile
program that is designed to be flexible in terms of input options, assembly and completion
criteria. The program uses a reference file to identify reads corresponding to the target
region. For the assembly, the program can use two well-known assemblers, Edena [4, 5]
and Velvet [6], but the source code is designed to be easily expandable to employ other
assemblers, as demonstrated in the documentation. It is the first program that can handle
multiple regions separately within a single run. Moreover, it is the first program that is
able to extract homologous sequence regions, such as barcoding sites.

In this paper, the exhaustive assembly capabilities of GRAbB were compared with that
of MITObim. Besides this comparison, GRAbB was also run on NGS data to demonstrate
its functionalities targeting multiple regions with diverse completion criteria.

Design and Implementation

Algorithm overview

GRAbB is written in Perl and it uses only modules that are part of the core distribution
of Perl. In addition to basic UNIX commands, the following third-party programs are
used by GRAbB: mirabait (from the MIRA package; [7]), Seqtk (https://github.com/
lh3/seqtk), Edena [4, 5], Velvet [6] and Exonerate [8].

21

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk


2

Chapter 2. GRAbB: Selective genome assembly

The program is designed to be versatile and flexible with the following functionalities:

• To use pairing information,

• To use additional bait sequences,

• To assemble multiple regions separately in a single run,

• To use any of a range of completion criteria (different ones for each region are allowed
in a multi-assembly run).

These functionalities are detailed below at the appropriate steps of the algorithm.

Input

As shown in Fig. 2.1a, there are two mandatory input files (the reference file and at least
one read file). In addition, there is an optional input file (the additional bait file).

The reference file should be a FASTA formatted file that contains one or more se-
quences and the identifier of each sequence has to be unique (as required by mirabait).
When the file contains multiple sequences and the program is run in multi-mode, the
reference file is split into separate reference files that contain only a single sequence. Fur-
thermore, the description lines may contain specification for the completion criterion to
be used for the given sequence. These criteria are used only if the multi-diff mode is
selected. Since the read selection is based on exact k-mer (31 bp) matching, the reference
sequence does not have to be highly similar to the target sequence.

Multiple read files can be specified as input. If two read files are given, it is assumed
that reads are paired, but in single-mode, reads are considered as single reads. The
program recognizes read pairs based on the identifiers of the reads, and thus this should
be identical for both sequences. The read files may be in FASTA or FASTQ format and
may be compressed (using gnuzip). When Edena is selected as the assembler program,
the reads must be of the same length.

The additional bait file has to be in FASTA format. This file is used for the first
baiting step by merging it with the reference to create a unified bait file. The file may
contain more than one sequence, however, unlike the reference file, the identifiers do not
have to be unique.

Main loop

The main loop of GRAbB can be summarized as follows: i) creating the bait file, ii) finding
reads by baiting, iii) de novo assembly of the selected reads, and iv) testing completion
(Fig. 2.1b). When multi-mode is selected, the general baiting step is followed by specific
baiting, de novo assembly and completion testing steps for each of the threads (Fig. 2.1c).
The threads are generated by splitting the reference file into single-entry FASTA files.
These newly created reference files are used as bait for the initial specific baiting steps
for the given thread (Fig. 2.1c). At the end of each cycle of the main loop, the program
checks whether there is any thread that is not completed yet: then it continues or stops
accordingly (Fig. 2.1d).

22



2

Are there new reads?

Is it completed?

Yes

Reference
(FASTA)

Reads
(FASTA/
FASTQ)

Additional
bait

(FASTA)

Create (general) bait

Find (general) reads

assemblyDe novo

Yes

No

No

Find (specific) reads

Are all of them completed?

Yes

Create (specific) bait

Are there new reads?

Is it completed?

Yes

assemblyDe novo

Yes

No

Find (specific) reads

Create (specific) bait

Yes

No

a

b

c

d

Are there new reads?
No

e

Extracted
region
(FASTA)

Assembly
(FASTA)

Extracted
region
(FASTA)

Assembly
(FASTA)

No

Figure 2.1: Schematic workflow of GRAbB.
a: The input files for GRAbB. b: The main loop of GRAbB. c: Internal loops for the
individual threads, the number of threads is based on the number of sequences in the
reference file in multi-mode, otherwise there is only a single thread. d: Check whether
there are active threads left or not. e: Output files for each thread. Dashed arrows
indicate optional files (only in exonerate-mode). Green arrows indicate termination signal
of a given thread or run. If GRAbB is not run in multi-mode, then the first step within
the internal loop is the de novo assembly, the preceding ones are skipped.

23



2

Chapter 2. GRAbB: Selective genome assembly

i) Creating the bait file Before the first baiting step, the specified reference and
the additional bait file are combined into a single internal bait file. In multi-mode, the
reference sequences corresponding to the given thread will be used for the first specific
baiting step.

In each of the later iterations of the program, the latest assembly is used as (internal)
bait file. For the general baiting step in multi-mode the individual assembly files are
combined into a single (general) bait file.

ii) Finding reads Reads corresponding to the target sequence are identified by using
exact k-mer (31 bp) matching that is implemented by mirabait. The names of the reads
thus identified are collected and added to the list of read names from previous iterations
(there is a separate list for general baiting and for each of the threads.) If there are no
new reads identified, the program stops the iteration: either for the given thread or for all
the threads, depending on which baiting step generated this result. The identified reads
are collected from the read files using Seqtk into internal read files.

By using a general baiting step before the specific baiting, it is possible to reduce the
required runtime, since the large input read file(s) is/are only screened once per iteration
and the specific baiting is confined to screening the reads that are already identified to
be specific during the general baiting.

iii) De novo assembly The program can use two assemblers, Edena and Velvet, by
default, however there is a skeleton code to add other assemblers to be used by the
program. Even though Edena is the default assembler, by using command line options
other assemblers may be selected as well.

The fact that single- or paired-mode is selected is passed on to the assembler program
that assembles the specific reads de novo. Furthermore, additional arguments may be
passed, such as overlap cutoff size (Edena), to the assembler program at the invocation
of the main program.

At the invocation of GRAbB it is possible to specify a length filter that excludes the
contigs from the assembly that are shorter than the specified length from the completion
testing, and these are not used for generating the bait file for the next iteration either.
This enables to minimize the effect of repeat regions on the assembly process.

iv) Testing completion There are multiple completion criteria that can be specified
for the program. These can be specified for each thread separately or for all of the threads
at once. In addition, it is possible to specify multiple criteria for the same thread or run.
The program stops when any one of these criteria is met.

The first completion criterion is implicit: the program stops if no new information is
found. This means that either there are no new reads found or that the new assembly is
identical to the bait used for the current iteration. If no other criterion is specified, then
the run will be exhaustive, since it iterates until it cannot find any new information.

The simplest explicit completion criterion is the size criterion. There are three options
that can be used for this setting: i) total assembly size, ii) length of the longest contig,
and iii) N50 value of the assembly. This criterion is tested independently for each of the

24



2

threads in multi-mode, or alternatively for the single thread. Multiple criteria can be used
in a single run; this also applies to the different size criteria. These settings are useful
when exploring the vicinity of a specified sequence region.

The final criterion is matching a homologous sequence. In this case, the specific
reference sequence is used to identify the homologous region within the assembly. In
order to identify the matching region, GRAbB uses Exonerate with settings that ensure
that the entire reference sequence is aligned to the contigs. This makes it possible to
match sequences that are somewhat dissimilar to the reference and may contain indels,
causing gaps in the alignment. If the reference could be aligned to the contigs over its
entire length, the completion criterion is met, and the matched region is extracted from
the assembly in the same orientation as the reference sequence and saved to a separate
output file. Otherwise, the length of the matched region is compared to that of the
previous iteration. In case the length of the matched region has increased, the thread or
run will continue, otherwise the thread or run will stop.

Up- and downstream processes

Besides the main program, there are some helper programs included within the package
that can help with preprocessing the input data or to further process the output data.
These are detailed in the documentation (https://github.com/b-brankovics/grabb).

Results

Simulated data

To compare the performance of GRAbB with that of MITObim 1.7 (using MIRA 4.0.2;
https://github.com/chrishah/MITObim.git; [1]), simulated sequencing data generated
based on the F. graminearum mitogenome sequence available from NCBI (NC 009493)
were used together with either the original F. graminearum (NC 009493) or F. oxysporum
(NC 017930) mitogenome as reference. MITObim has two assembly settings: de novo
and mapping. However, since the mapping setting did not prove to be applicable to
reconstruct the F. graminearum sequence by using F. oxysporum as reference, only the
de novo setting was used for the comparison. GRAbB produced a single contig in both
cases. MITObim produced multiple contigs in both runs, however a single contig could
be obtained from the LargeContigs MAF format file produced by using miraconvert. All
the single contigs produced could be circularized using the merge contigs.pl and were
identical to the original sequence. Although both MITObim and GRAbB could assemble
the genome correctly, GRAbB did it more efficiently and demanded less disk space for
the output folders Table 2.1.

NGS Data

To demonstrate the capabilities of GRAbB, it was run on paired-end reads derived from
Fusarium oxysporum f. sp. cubense race 4 strain B2 (SRR550152; [9]) and the results were
compared to the assembly published for this strain (AMGQ01). In the single run multiple

25

https://github.com/b-brankovics/grabb
https://github.com/chrishah/MITObim.git


2

Chapter 2. GRAbB: Selective genome assembly

Table 2.1: Comparison between GRAbB and MITObim using our in silico
generated paired-end read library.

Program Reference N
CPU
usage
(%)*

Time
elapsed
(m:s)

Maximum
memory

usage
(Mb)

Output
folder
size

(Mb)
GRAbB F. graminearum 2 157 00:15.52 285.09 70
GRAbB F. oxysporum 10 161 01:49.24 286.05 527
MITObim F. graminearum 3 150 09:42.15 1,354.86 4,126
MITObim F. oxysporum 9 150 25:37.71 1,358.81 10,667

Data were generated by /usr/bin/time on Ubuntu 14.04.1. Both programs were run on
the same simulated read library derived from F. graminearum mitogenome. Reference
column shows which mitogenome was the input for the run. N is the number of iteration
it took to complete the assembly. Output folder size refers to the disk space occupied by
the output files of the run. This was assessed using /usr/bin/du on Ubuntu 14.04.1.
* The program, /usr/bin/time, assigns 100 % for each of the cores of the processor, and
the computer used has four cores, thus the maximal CPU usage is 400 %.

regions were targeted simultaneously: mitochondrial genome, rDNA region, barcoding
loci (IGS, TEF1a, RPB1 and RPB2). The goal of the threads were as follows: assemble
the complete mitogenome, assemble the complete rDNA region, extract barcoding loci,
compare the extraction results using sequences from different species and test the effect
on the extraction when the query contains a gap (Table 2.2).

Mitochondrial genome The mitochondrial genome of the strain was assembled into a
single contig, which had 9-9 oligoC sequences at both ends. To solve this problem, Edena
was rerun on the sequences specific for the mitogenome, but the reads were trimmed to
be 70 bp long. By removing part of the ‘3 end of the reads, the assembly improved. The
final assembly contained a single contig, and the two ends of the contig overlapped by 60
bp, indicating a circular nature. This is in agreement with the fact that the mitochondrial
genome is circular in Fusarium spp. [10].

The circularized sequence was 49697 bp long. The reference sequence (NC 017930)
lacked a region (approximately 12 kbp long) that is present in the mitogenomes of all
other Fusarium spp. sequenced thus far [10]. The new sequence contained this region, in
addition to three new introns in protein coding genes.

In the AMGQ01 assembly there are 30 contigs containing mitochondrial sequences.
These sequences cover only 39.07 % of the mitogenome.

Ribosomal DNA region (18S rRNA - ITS1 - 5.8S rRNA - ITS2 - 28S rRNA -
IGS) The assembly for the rDNA region contained two contigs, and the contigs could be
joined because they overlapped by 99 bp, indicating a circular or repetitive morphology.
The ribosomal DNA region is not circular, but since it is present within the genome in

26



2

T
ab

le
2.

2:
O

v
e
rv

ie
w

o
f

th
e

m
u
lt

i-
q
u
e
ry

ru
n
.

T
h
re

a
d

n
u
m

b
e
r

T
a
rg

e
t

R
e
fe

re
n
ce

R
e
su

lt
si

ze
(b

p
)

A
ss

e
m

b
ly

ty
p

e
N

u
m

b
e
r

o
f

it
e
ra

ti
o
n

s

R
e
g
io

n
S
p

e
ci

e
s

A
cc

e
ss

io
n

n
u
m

b
e
r

S
iz

e
(b

p
)

S
p

e
ci

fi
c

G
e
n

e
ra

l

1
m

t
m

t
F

.
ox

ys
po

ru
m

N
C

01
79

30
34

,4
77

49
,6

97
ex

h
au

st
iv

e
18

3
2

rD
N

A
IG

S
F

.
ox

ys
po

ru
m

F
D

00
40

3
IG

S
1,

44
9

7,
87

2
ex

h
au

st
iv

e
2

10
3

IG
S

IG
S

F
.

ox
ys

po
ru

m
F

D
00

40
3

IG
S

1,
44

9
1,

44
6

ex
on

er
at

e
1

1
4

T
E

F
1a

T
E

F
1a

F
.

ox
ys

po
ru

m
F

D
00

40
3

E
F

-1
a

68
9

68
4

ex
on

er
at

e
1

1
5

T
E

F
1a

T
E

F
1a

F
.

ox
ys

po
ru

m
F

D
00

40
3

E
F

-1
a*

65
2

64
7

ex
on

er
at

e
1

1
6

T
E

F
1a

T
E

F
1a

F
.

gr
am

in
ea

ru
m

F
D

00
00

1
E

F
-1

a
64

3
64

7
ex

on
er

at
e

3
1

7
T

E
F

1a
T

E
F

1a
F

.
so

la
n

i
F

D
01

03
6

E
F

-1
a

67
7

64
7

ex
on

er
at

e
4

1
8

R
P

B
1

R
P

B
1

F
.

ox
ys

po
ru

m
F

D
02

00
3

R
P

B
1

1,
60

6
1,

60
6

ex
on

er
at

e
1

1
9

R
P

B
2

R
P

B
2

F
.

ox
ys

po
ru

m
F

D
02

00
3

R
P

B
2

1,
76

2
1,

89
9

ex
on

er
at

e
1

1

10
R

P
B

2
R

P
B

2
F

.
ox

ys
po

ru
m

F
D

00
12

0
R

P
B

2-
57

F
D

00
12

0
R

P
B

2-
71

1
87

9
86

0
1,

87
6

ex
on

er
at

e
1

1

T
h
e

ac
ce

ss
io

n
n
u
m

b
er

s
ar

e
ei

th
er

G
en

B
an

k
ac

ce
ss

io
n
s

or
F

u
sa

ri
u
m

ID
(h

tt
p
:/

/i
so

la
te

.f
u
sa

ri
u
m

d
b
.o

rg
)

ac
ce

ss
io

n
s.

T
h
e

as
se

m
b
ly

ty
p

e
sp

ec
ifi

es
w

h
ic

h
as

se
m

b
ly

m
o
d
e

w
as

se
le

ct
ed

fo
r

th
e

gi
ve

n
th

re
ad

d
u
ri

n
g

th
e

G
R

A
b
B

ru
n
.

M
u
lt

ip
le

sp
ec

ifi
c

it
er

at
io

n
s

ar
e

ru
n

on
ly

d
u
ri

n
g

th
e

fi
rs

t
ge

n
er

al
it

er
at

io
n
.

*:
T

h
is

se
q
u
en

ce
w

as
tr

u
n
ca

te
d

to
sp

an
th

e
sa

m
e

re
gi

on
as

F
D

00
00

1
E

F
-1

a
an

d
F

D
01

03
6

E
F

-1
a.

27



2

Chapter 2. GRAbB: Selective genome assembly

multiple copies as direct repeats [11] it can be considered as a circular sequence from a
bioinformatics perspective.

The circularized sequence was 7,872 bp long. In the AMGQ01 assembly there are 14
contigs containing rDNA region sequences. These sequences cover only 63.89 % of the
rDNA region.

Barcoding loci (IGS, TEF1a, RPB1 and RPB2) All the threads targeting bar-
coding loci finished by matching the query sequence in the assemblies. The result for the
threads of the three TEF1a sequences from different species (F. oxysporum, F. grami-
nearum and F. solani) returned identical sequences. The IGS sequence had only partial
matches when compared with the AMGQ01 assembly, but matched completely with the
newly assembled rDNA region sequence. The TEF1a, RPB1 and RPB2 sequences were
identical to matching sequences from the assembly (AMGQ01), however, the RPB2 locus
was found at the junction of two contigs in the assembly, which overlapped by 5 bp.

Availability and Future Directions

GRAbB is available with explanatory documentation at https://github.com/b-brankovics/
grabb. Furthermore, GRAbB is available as a docker repository: brankovics/grabb. The
GitHub package has been tested on Ubunutu 12.04 and 14.04. The docker repository can
be used on any platform that has a working installation of docker. The program is made
available with MIT license.

Bibliography

[1] Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly
from genomic next-generation sequencing reads - a baiting and iterative mapping
approach. Nucleic Acids Research. 2013;41(13):e129.

[2] Green RE, Malaspinas AS, Krause J, Briggs AW, Johnson PLF, Uhler C, et al. A
complete Neandertal mitochondrial genome sequence determined by high-throughput
sequencing. Cell. 2008 aug;134(3):416–426.

[3] Tsai IJ, Otto TD, Berriman M. Improving draft assemblies by iterative mapping and
assembly of short reads to eliminate gaps. Genome Biol. 2010;11(4):R41.

[4] Hernandez D, François P, Farinelli L, Oster̊as M, Schrenzel J, Øster̊as M, et al.
De novo bacterial genome sequencing: millions of very short reads assembled on a
desktop computer. Genome Res. 2008;18(5):802–809.

[5] Hernandez D, Tewhey R, Veyrieras JB, Farinelli L, Øster̊as M, François P, et al. De
novo finished 2.8 Mbp Staphylococcus aureus genome assembly from 100 bp short
and long range paired-end reads. Bioinformatics. 2014;30(1):40–49.

[6] Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de
Bruijn graphs. Genome Res. 2008;18(5):821–829.

28

https://github.com/b-brankovics/grabb
https://github.com/b-brankovics/grabb


2

Bibliography

[7] Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and
additional sequence information. In: Computer Science and Biology: Proceedings of
the German Conference on Bioinformatics (GCB).; 1999. p. 45–56.

[8] Slater GSC, Birney E. Automated generation of heuristics for biological sequence
comparison. BMC Bioinformatics. 2005;6:31.

[9] Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, et al. Genome and transcriptome
analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana
vascular wilt disease. PLoS ONE. 2014;9(4):e95543.

[10] Fourie G, van der Merwe NA, Wingfield BD, Bogale M, Tudzynski B, Wingfield MJ,
et al. Evidence for inter-specific recombination among the mitochondrial genomes of
Fusarium species in the Gibberella fujikuroi complex. BMC genomics. 2013;14(1):605.

[11] Hillis DM, Dixon MT. Ribosomal DNA: molecular evolution and phylogenetic infer-
ence. Q Rev Biol. 1991 dec;66(4):411–453.

[12] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res. 2004;32(5):1792–1797.

[13] Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and
space complexity. BMC Bioinformatics. 2004 aug;19(5):113.

[14] Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, et al. Fast statistical
alignment. PLoS Comput Biol. 2009;5(5):e1000392.

29



2

Chapter 2. GRAbB: Selective genome assembly

Supplementary material

Sequence similarity between target and query sequences

Sequence similarity between query and target have been calculate by two approaches:
sequence alignment and 31-mer comparison.

Sequence alignment: Target and query have been aligned using MUSCLE [12, 13]
or FSA [14], and the identical positions have been reported. The number of identical
positions have been divided by the length of the alignment to calculate the percentage.

31-mer approach: The number of 31-mers shared by the query and target have been
calculated and reported. The percentage is calculate by dividing the number of shared
31-mers with the number of unique 31-mers in the target sequence.

Table 2.S1: Sequence similarity of published mitochondrial genomes

Species
Length

(bp)
Identical

(bp)
Identical

(%)
Shared
31-mers

31-mer
identity

(%)
F. graminearuma 95676 95676 100.00 189584 100.00
F. oxysporumb 47409 24669 24.04 18304 9.65
aGenBank accession: NC 009493
bGenBank accession: NC 017930

Table 2.S2: Sequence similarity of TEF1a sequences

Species
Length

(bp)
Identical

(bp)
Identical

(%)
Shared
31-mers

31-mer
identity

(%)
F. oxysporuma 647 647 100.00 1234 100.00
F. oxysporumb 652 636 97.40 702 56.89
F. graminearumc 643 524 77.86 200 16.21
F. solanid 677 499 71.49 232 18.87
aGenBank accession: AMGQ01 (Sequence was truncated to match
FD 00001 EF-1a.)
bFusariumID (http://isolate.fusariumdb.org) accession: FD 00403 EF-1a
(Sequence was truncated to match FD 00001 EF-1a.)
cFusariumID (http://isolate.fusariumdb.org) accession: FD 00001 EF-1a
dFusariumID (http://isolate.fusariumdb.org) accession: FD 01036 EF-1a

30



2

Supplementary material
T

ab
le

2.
S
3:

S
eq

u
en

ce
si

m
il
ar

it
y

b
et

w
ee

n
q
u
er

ie
s

an
d

ta
rg

et
s

in
th

e
m

u
lt

i-
q
u
er

y
ru

n
.

T
h
re

a
d

n
u
m

-
b

e
r

T
a
rg

e
t

S
p

e
ci

e
s

A
cc

e
ss

io
n

n
u
m

b
e
r

Q
u
e
ry

si
ze

(b
p
)

T
a
r-

g
e
t

si
ze

(b
p
)

Id
e
n
ti

-
ca

l
(b

p
)

Id
e
n
ti

-
ca

l
(%

)

S
h

a
re

d
3
1
-

m
e
rs

3
1
-

m
e
r

id
e
n

-
ti

ty
(%

)

1
m

t
F

.
ox

ys
po

ru
m

N
C

01
79

30
34

,4
77

49
,6

97
24

66
9

65
.2

4
45

52
2

46
.1

7

2
rD

N
A

F
.

ox
ys

po
ru

m
F

D
00

40
3

IG
S

1,
44

9
7,

87
2

14
06

17
.8

5
13

36
8.

49
3

IG
S

F
.

ox
ys

po
ru

m
F

D
00

40
3

IG
S

1,
44

9
1,

44
6

14
06

96
.9

0
13

36
47

.1
8

4
T

E
F

1a
F

.
ox

ys
po

ru
m

F
D

00
40

3
E

F
-1

a
68

9
68

4
67

3
97

.5
4

77
4

59
.1

7
5

T
E

F
1a

F
.

ox
ys

po
ru

m
F

D
00

40
3

E
F

-1
a*

65
2

64
7

63
6

97
.4

0
70

2
56

.8
9

6
T

E
F

1a
F

.
gr

am
in

ea
ru

m
F

D
00

00
1

E
F

-1
a

64
3

64
7

52
4

77
.8

6
20

0
16

.2
1

7
T

E
F

1a
F

.
so

la
n

i
F

D
01

03
6

E
F

-1
a

67
7

64
7

49
9

71
.4

9
23

2
18

.8
0

8
R

P
B

1
F

.
ox

ys
po

ru
m

F
D

02
00

3
R

P
B

1
1,

60
6

1,
60

6
15

90
99

.0
0

20
90

66
.3

1
9

R
P

B
2

F
.

ox
ys

po
ru

m
F

D
02

00
3

R
P

B
2

1,
76

2
1,

89
9

17
53

92
.3

1
29

02
77

.6
4

10
R

P
B

2
F

.
ox

ys
po

ru
m

F
D

00
12

0
R

P
B

2-
57

F
D

00
12

0
R

P
B

2-
71

1
87

9
86

0
1,

87
6

17
24

91
.9

0
24

86
67

.3
3

T
h
e

ac
ce

ss
io

n
n
u
m

b
er

s
ar

e
ei

th
er

G
en

B
an

k
ac

ce
ss

io
n
s

or
F

u
sa

ri
u
m

ID
(h

tt
p
:/

/i
so

la
te

.f
u
sa

ri
u
m

d
b
.o

rg
)

ac
ce

ss
io

n
s.

*:
T

h
is

se
q
u
en

ce
w

as
tr

u
n
ca

te
d

to
sp

an
th

e
sa

m
e

re
gi

on
as

F
D

00
00

1
E

F
-1

a
an

d
F

D
01

03
6

E
F

-1
a.

31


