734 research outputs found
Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering
We compute the chromo-field distributions of static color-dipoles in the
fundamental and adjoint representation of SU(Nc) in the loop-loop correlation
model and find Casimir scaling in agreement with recent lattice results. Our
model combines perturbative gluon exchange with the non-perturbative stochastic
vacuum model which leads to confinement of the color-charges in the dipole via
a string of color-fields. We compute the energy stored in the confining string
and use low-energy theorems to show consistency with the static quark-antiquark
potential. We generalize Meggiolaro's analytic continuation from parton-parton
to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to
high-energy scattering that allows us in principle to calculate S-matrix
elements directly in lattice simulations of QCD. We apply this approach and
compute the S-matrix element for high-energy dipole-dipole scattering with the
presented Euclidean loop-loop correlation model. The result confirms the
analytic continuation of the gluon field strength correlator used in all
earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in
Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional
discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes
theorem, old Appendix A -> Sec.3, several references added
Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists
Closer collaboration among ecologists, systematists, and evolutionary biologists working in tropical forests, centred on studies within long-term permanent plots, would be highly beneficial for their respective fields. With a key unifying theme of the importance of vouchered collection and precise identification of species, especially rare ones, we identify four priority areas where improving links between these communities could achieve significant progress in biodiversity and conservation science: (i) increasing the pace of species discovery; (ii) documenting species turnover across space and time; (iii) improving models of ecosystem change; and (iv) understanding the evolutionary assembly of communities and biomes
Multilocal programming and applications
Preprint versionMultilocal programming aims to identify all local minimizers of unconstrained
or constrained nonlinear optimization problems. The multilocal programming
theory relies on global optimization strategies combined with simple ideas
that are inspired in deflection or stretching techniques to avoid convergence to the
already detected local minimizers. The most used methods to solve this type of problems
are based on stochastic procedures and a population of solutions. In general,
population-based methods are computationally expensive but rather reliable in identifying
all local solutions. In this chapter, a review on recent techniques for multilocal
programming is presented. Some real-world multilocal programming problems
based on chemical engineering process design applications are described.Fundação para a Ciência e a Tecnologia (FCT
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
Engaging workplace representatives in research: what recruitment strategies work best?
Background
Workplaces are key stakeholders in work and health but little is known about the methods used to recruit workplace representatives (WRs), including managers, occupational health advisers and colleagues, to externally funded healthcare research studies.
Aims
To detail the strategies used in recruiting WRs from three areas of the UK to a qualitative study concerning their experience of employees undergoing hip or knee replacement, to compare the strategies and inform recruitment methods for future studies.
Methods
Six strategies were used to recruit WRs from organizations of different sizes and sectors. Data on numbers approached and responses received were analysed descriptively.
Results
Twenty-five WRs were recruited. Recruitment had to be extended outside the main three study areas, and took several months. It proved more difficult to recruit from non-service sectors and small- and medium-sized enterprises. The most successful strategies were approaching organizations that had participated in previous research studies, or known professionally or personally to team members.
Conclusions
Recruiting a diverse sample of WRs to healthcare research requires considerable resources and persistence, and a range of strategies. Recruitment is easier where local relationships already exist; the importance of building and maintaining these relationships cannot be underestimated. However, the potential risks of bias and participant fatigue need to be acknowledged and managed. Further studies are needed to explore how WRs can be recruited to health research, and to identify the researcher effort and costs involved in achieving unbiased and representative samples
Managing employees undergoing total hip and knee replacement: experiences of workplace representatives
Joint replacement is a cost-effective and efficient method of relieving pain, and improving function and health related quality of life, for people with arthritis of the hip and knee [1]. Arthritis-related loss of physical function is associated with unemployment, reduced income and increased sickness absence [2]. In a survey investigating the impact of osteoarthritis (OA), Fautrel et al found that OA has a substantial impact on work, with 20% of patients surveyed still in the workforce and two thirds of those reporting that OA was affecting their work [3]. These factors, in combination with an ageing workforce and changes to the pension age, have resulted in an increase in the number of hip and knee replacements carried out on people of working age over the past ten years. In 2015, 17,293 of 84,462 (20%) hip replacements and 16,121 of 94,437 (17%) knee replacements performed in England, Wales and Northern Ireland were in people aged under 60 years; 25,249 (30%) hip replacements and 32,321 (34%) knee replacements were performed on inpatients aged between 60-69 years [4]. Projections from 2005 suggest that by 2030, the demand for primary total hip (THR) and knee (TKR) replacements will increase by 174% and 673% respectively [5].Consequently return to work (RTW) will be a priority for an increasing proportion of the population following surgery
Effects of follicular phase exercise on luteinizing hormone pulse characteristics in sedentary eumenorrhoeic women
OBJECTIVE Current studies reveal little regarding the Inception of exercise-induced LH changes during physical training. This study aimed to assess the susceptibility of the hypothalamic–pituitary axis to the acute physical stress of exercise in untrained, physically inactive women. The acute effects of submaximal endurance exercise upon the pulsatile LH secretion in the follicular phase were compared with those accompanying leisurely strolling for a similar time period. SUBJECTS All subjects were eumenorrhoelc, as determined by biphasic temperature patterns, detection of the urinary LH surge, and mid-luteal serum progesterone levels. Subjects were not physically active and had little history of strenuous exercise ( V o 2 max = 38·0 ± 1·8) (mean ± SEM) ml/kg/min). DESIGN All women completed a 13·5-hour pulsatility test which included three consecutive 20-minute runs on a treadmill at 50, 60 and 70% of the subjects’maximum oxygen uptake ( n = 16). Six of these same subjects completed a separate test on another occasion in which one hour of leisurely strolling was substituted for exercise. Blood was sampled every 10 minutes via an indwelling cannula for 4·5 hours before and 8 hours after one hour of exercise and or strolling. MEASUREMENTS A pulse algorithm (Pulsar) was used to quantify LH pulse characteristics. RESULTS Exercise produced no significant effects upon LH pulse frequency or mean serum LH concentration. However, exercise of moderate intensity caused a significant increase in LH pulse amplitude ( P < 0·05). Strolling produced no significant changes in LH secretion. CONCLUSION Acute exercise of moderate intensity in the follicular phase of untrained women is an insufficient stimulus to inhibit the GnRH pulse generator in the post-exercise period, yet may produce a slight stimulatory effect on the amount of LH released per pulsePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73507/1/j.1365-2265.1994.tb02794.x.pd
Small-scale magnetic buoyancy and magnetic pumping effects in a turbulent convection
We determine the nonlinear drift velocities of the mean magnetic field and
nonlinear turbulent magnetic diffusion in a turbulent convection. We show that
the nonlinear drift velocities are caused by the three kinds of the
inhomogeneities, i.e., inhomogeneous turbulence; the nonuniform fluid density
and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in
the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear
drift velocities of the mean magnetic field cause the small-scale magnetic
buoyancy and magnetic pumping effects in the turbulent convection. These
phenomena are different from the large-scale magnetic buoyancy and magnetic
pumping effects which are due to the effect of the mean magnetic field on the
large-scale density stratified fluid flow. The small-scale magnetic buoyancy
and magnetic pumping can be stronger than these large-scale effects when the
mean magnetic field is smaller than the equipartition field. We discuss the
small-scale magnetic buoyancy and magnetic pumping effects in the context of
the solar and stellar turbulent convection. We demonstrate also that the
nonlinear turbulent magnetic diffusion in the turbulent convection is
anisotropic even for a weak mean magnetic field. In particular, it is enhanced
in the radial direction. The magnetic fluctuations due to the small-scale
dynamo increase the turbulent magnetic diffusion of the toroidal component of
the mean magnetic field, while they do not affect the turbulent magnetic
diffusion of the poloidal field.Comment: 13 pages, 4 figure, REVTEX4, Geophysical and Astrophysical Fluid
Dynamics, in pres
- …
