899 research outputs found

    Информационные технологии в банковской системе

    Get PDF
    Almost all activities of the Bank subject to the domination systems. The system itself involves a procedure control, a set of interconnected elements, procedures, methods, and many similar concepts. When the Bank is recruiting employees, it applies to this particular system, which involves placing ads on job interviews, the definition of appropriate skills, discussion of working conditions and so on. This process is a slender organized system with its internal procedures and prescribed norms

    Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Get PDF
    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO<sub>2</sub> dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO<sub>2</sub> fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO<sub>2</sub> and the soil matrix, such as CO<sub>2</sub> diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO<sub>2</sub> or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps

    Mechanical properties and formation mechanisms of a wire of single gold atoms

    Get PDF
    A scanning tunneling microscope (STM) supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics (MD) simulations, and we find that the total effective stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.Comment: To be published in Phys. Rev. Lett. 4 pages with 3 figure

    The AFLOW Fleet for Materials Discovery

    Full text link
    The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational materials design automates high-throughput first principles calculations, and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermo-mechanical properties and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.7 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.Comment: 14 pages, 8 figure

    Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    Full text link
    We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2's electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced

    Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study

    Get PDF
    The intra vitam diagnosis of prion disease is challenging and a definite diagnosis still requires neuropathological examination in non-familial cases. Magnetic resonance imaging has gained increasing importance in the diagnosis of prion disease. The aim of this study was to compare the usefulness of different magnetic resonance imaging sequences and proton magnetic resonance spectroscopy in the differential diagnosis of patients with rapidly progressive neurological signs compatible with the clinical diagnosis of sporadic prion disease. Twenty-nine consecutive patients with an initial diagnosis of possible or probable sporadic prion disease, on the basis of clinical and electroencephalography features, were recruited. The magnetic resonance protocol included axial fluid-attenuated inversion recovery-T2- and diffusion-weighted images, and proton magnetic resonance spectroscopy of the thalamus, striatum, cerebellum and occipital cortex. Based on the clinical follow-up, genetic studies and neuropathology, the final diagnosis was of prion disease in 14 patients out of 29. The percentage of correctly diagnosed cases was 86% for diffusion-weighted imaging (hyperintensity in the striatum/cerebral cortex), 86% for thalamic N-acetyl-aspartate to creatine ratio (cutoff ≤1.21), 90% for thalamic N-acetyl-aspartate to myo-inositol (mI) ratio (cutoff ≤1.05) and 86% for cerebral spinal fluid 14-3-3 protein. All the prion disease patients had N-acetyl-aspartate to creatine ratios ≤1.21 (100% sensitivity and 100% negative predictive value) and all the non-prion patients had N-acetyl-aspartate to myo-inositol ratios >1.05 (100% specificity and 100% positive predictive value). Univariate logistic regression analysis showed that the combination of thalamic N-acetyl-aspartate to creatine ratio and diffusion-weighted imaging correctly classified 93% of the patients. The combination of thalamic proton magnetic resonance spectroscopy (10 min acquisition duration) and brain diffusion-weighted imaging (2 min acquisition duration) may increase the diagnostic accuracy of the magnetic resonance scan. Both sequences should be routinely included in the clinical work-up of patients with suspected prion disease

    Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces

    Full text link
    The formation energies of nanostructures play an important role in determining their properties, including the catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we find that the density functional theory (DFT) calculated formation energies of (2,2) nanorods, (3,3) nanotubes, and the (110) and (100) surfaces may be described semi-quantitatively by the fraction of metal--oxygen bonds broken and the bonding band centers in the bulk metal oxide

    Increased percentage of L-selectin+ and ICAM-1+ peripheral blood CD4+/CD8+ T cells in active Graves' ophthalmopathy.

    Get PDF
    The purpose of the study was to evaluate the percentage of CD4+/CD8+ peripheral T cells expressing CD62L+ and CD54+ in patients with Graves' disease and to assess if these estimations could be helpful as markers of active ophthalmopathy. The study was carried out in 25 patients with Graves' disease (GD) divided into 3 groups: 1/ 8 patients with active Graves' ophthalmopathy (GO) (CAS 3-6, GO complaints pound 1 year), 2/ 9 patients with hyperthyroid GD without symptoms of ophthalmopathy (GDtox) and 3/ 8 patients with euthyroid GD with no GO symptoms (GDeu). The control group consisted of 15 healthy volunteers age and sex matched to groups 1-3. The expression of lymphocyte adhesion molecules was evaluated by using three-color flow cytometry. In GO group the percentage of CD8+CD54+, CD8+CD62L+, CD4+CD54+ and CD4+CD62L+ T cells was significantly higher as compared to controls (p&lt;0.001, p&lt;0.05, p&lt;0.01, p&lt;0.001 respectively). The percentage of CD8+CD54+ T lymphocytes was also elevated in GO group in comparison to hyperthyroid GD patients (p&lt; 0.05). CD4+CD62L+ and CD8+CD54+ percentages were also increased in GDtox and GDeu as compared to controls. We found a positive correlation between the TSHRab concentration and the percentage of CD8+CD62L+ T cells in all studied groups (r= 0.39, p&lt;0.05) and between the TSHRab level and CAS (r= 0.77, p&lt;0.05). The increased percentage of CD8+CD54+ and CD8+CD62L+ T cells in patients with Graves' ophthalmopathy may be used as a marker of immune inflammation activity
    corecore