15 research outputs found

    Investigation of Shared Genetic Risk Factors Between Parkinson's Disease and Cancers

    Get PDF
    Background Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. Objective We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. Methods We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. Results We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). Conclusions We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA

    Cost of exome analysis in patients with intellectual disability: a micro-costing study in a French setting

    No full text
    Abstract Background With the development of next generation sequencing technologies in France, exome sequencing (ES) has recently emerged as an opportunity to improve the diagnosis rate of patients presenting an intellectual disability (ID). To help French policy makers determine an adequate tariff for ES, we aimed to assess the unit cost per ES diagnostic test for ID from the preparation of the pre-analytical step until the report writing step and to identify its main cost drivers. Methods A micro-costing bottom-up approach was conducted for the year 2018 in a French setting as part of the DISSEQ study, a cost-effectiveness study funded by the Ministry of Health and performed in collaboration with the GAD (GĂ©nĂ©tique des Anomalies du DĂ©veloppement), a genetic team from the Dijon University Hospital, and a public sequencing platform, the Centre National de Recherche en GĂ©nomique Humaine (CNRGH). The analysis was conducted from the point of view of these two ES stakeholders. All of the resources (labor, equipment, disposables and reagents, reusable material) required to analyze blood samples were identified, collected and valued. Several sensitivity analyses were performed. Results The unit nominal cost per ES diagnostic test for ID was estimated to be €2,019.39. Labor represented 50.7% of the total cost. The analytical step (from the preparation of libraries to the analysis of sequences) represented 88% of the total cost. Sensitivity analyses suggested that a simultaneous price decrease of 20% for the capture kit and 50% for the sequencing support kit led to an estimation of €1,769 per ES diagnostic test for ID. Conclusion This is the first estimation of ES cost to be done in the French setting of ID diagnosis. The estimation is especially influenced by the price of equipment kits, but more generally by the organization of the centers involved in the different steps of the analysis and the time period in which the study was conducted. This information can now be used to define an adequate tariff and assess the efficiency of ES. Trial registration ClinicalTrials.gov identifier NCT03287206 on September 19, 2017

    Blood

    Get PDF
    Genetic risk score (GRS) analysis is an increasingly popular approach to derive individual risk prediction models for complex diseases. In the context of venous thrombosis (VT), any GRS shall integrate information at the ABO blood group locus, the latter being one of the major susceptibility locus for this disease. However, there is yet no consensus about which single nucleotide polymorphisms (SNPs) must be investigated when one is interested in properly assessing the association of ABO locus with VT risk. Using comprehensive haplotype analyses of ABO blood group tagging SNPs in up to 5,425 cases and 8,445 controls from 6 studies, we demonstrated that using only rs8176719 (tagging O1) to correctly assess the impact of ABO locus on VT risk is suboptimal as 5% of rs8176719-delG carriers are not exposed at higher VT risk. Instead, we recommend to use 4 SNPs, rs2519093 (tagging A1), rs1053878 (A2), rs8176743 (B) and rs41302905 (O2) in any analysis aimed at assessing the impact of ABO locus on VT risk to avoid any risk misestimation. Compared to O1 haplotype that can be inferred from these 4 SNPs, the A2 haplotype is associated with a modest increase in VT risk (odds ratio ~1.2), A1 and B haplotypes are associated with a ~1.8 fold increased risk while O2 tend to be slightly protective (odds ratio ~0.80). In addition, our analyses clearly showed that while the A1 an B blood group are associated with increased vWF and FVIII plasma levels only the A1 blood group is associated wih ICAM plasma levels but in an opposite direction, leaving additional avenues to be explored in order to fully understand the whole spectrum of biological effect of ABO locus on cardiovascular traits

    Multiethnic genome-wide association study of differentiated thyroid cancer in the EPITHYR consortium

    No full text
    Incidence of differentiated thyroid carcinoma (DTC) varies considerably between ethnic groups, with particularly high incidence rates in Pacific Islanders. DTC is one of the cancers with the highest familial risk suggesting a major role of genetic risk factors, but only few susceptibility loci were identified so far. In order to assess the contribution of known DTC susceptibility loci and to identify new ones, we conducted a multiethnic genome-wide association study (GWAS) in individuals of European ancestry and of Oceanian ancestry from Pacific Islands. Our study included 1554 cases/1973 controls of European ancestry and 301 cases/348 controls of Oceanian ancestry from seven population-based case-control studies participating to the EPITHYR consortium. All participants were genotyped using the OncoArray-500K Beadchip (Illumina). We confirmed the association with the known DTC susceptibility loci at 2q35, 8p12, 9q22.33 and 14q13.3 in the European ancestry population and suggested two novel signals at 1p31.3 and 16q23.2, which were associated with thyroid-stimulating hormone levels in previous GWAS. We additionally replicated an association with 5p15.33 reported previously in Chinese and European populations. Except at 1p31.3, all associations were in the same direction in the population of Oceanian ancestry. We also observed that the frequencies of risk alleles at 2q35, 5p15.33 and 16q23.2 were significantly higher in Oceanians than in Europeans. However, additional GWAS and epidemiological studies in Oceanian populations are needed to fully understand the highest incidence observed in these populations

    Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23

    No full text
    Aims  Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of systolic heart failure. Methods and results  We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440 controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome 3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 × 10−11 and 7.7 × 10−4 in the discovery and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 × 10−8 and 1.4 × 10−3 in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chromosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 3-fold increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observations in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent functional analysis, strongly suggest SMARCB1 as the candidate culprit gene. Conclusion  This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological pathways underlying heart failure

    Cross-ancestry investigation of venousc genomic predictors

    Get PDF
    Background: Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. Methods: We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. Results: In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. Conclusions: Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments

    Association and performance of polygenic risk scores for breast cancer among French women presenting or not a familial predisposition to the disease

    No full text
    International audienceBackground: Three partially overlapping breast cancer polygenic risk scores (PRS) comprising 77, 179 and 313 SNPs have been proposed for European-ancestry women by the Breast Cancer Association Consortium (BCAC) for improving risk prediction in the general population. However, the effect of these SNPs may vary from one country to another and within a country because of other factors. Objective: To assess their associated risk and predictive performance in French women from (1) the CECILE population-based case-control study, (2) BRCA1 or BRCA2 (BRCA1/2) pathogenic variant (PV) carriers from the GEMO study, and (3) familial breast cancer cases with no BRCA1/2 PV and unrelated controls from the GENESIS study. Results: All three PRS were associated with breast cancer in all studies, with odds ratios per standard deviation varying from 1.7 to 2.0 in CECILE and GENESIS, and hazard ratios varying from 1.1 to 1.4 in GEMO. The predictive performance of PRS313 in CECILE was similar to that reported in BCAC but lower than that in GENESIS (area under the receiver operating characteristic curve (AUC) = 0.67 and 0.75, respectively). PRS were less performant in BRCA2 and BRCA1 PV carriers (AUC = 0.58 and 0.54 respectively). Conclusion: Our results are in line with previous validation studies in the general population and in BRCA1/2 PV carriers. Additionally, we showed that PRS may be of clinical utility for women with a strong family history of breast cancer and no BRCA1/2 PV, and for those carrying a predicted PV in a moderate-risk gene like ATM, CHEK2 or PALB2
    corecore