7 research outputs found

    Aggressive PDACs show hypomethylation of repetitive elements and the execution of an intrinsic IFN program linked to a ductal cell of origin

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylation(low) tumors are characterized by higher expression of endogenous retroviral (ERV) transcripts and dsRNA sensors which leads to a cell intrinsic activation of an interferon signature (IFNsign). This results in a pro-tumorigenic microenvironment and poor patient outcome. Methylation(low)/IFNsign(high) and Methylation(high)/IFNsign(low) PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras(G12D)/Trp53(−/−) mouse PDACs show higher expression of IFNsign compared to acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylation(low)/IFNsign(high) subtype potentially targetable by agents blocking intrinsic IFN-signaling

    Emerging patterns of cryptic chromosomal imbalances in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of the literature

    No full text
    BACKGROUND: Chromosomal abnormalities are a major cause of mental retardation and multiple congenital anomalies (MCA/MR). Screening for these chromosomal imbalances has mainly been done by standard karyotyping. Previous array CGH studies on selected patients with chromosomal phenotypes and normal karyotypes suggested an incidence of 10-15% of previously unnoticed de novo chromosomal imbalances. OBJECTIVE: To report array CGH screening of a series of 140 patients (the largest published so far) with idiopathic MCA/MR but normal karyotype. RESULTS: Submicroscopic chromosomal imbalances were detected in 28 of the 140 patients (20%) and included 18 deletions, seven duplications, and three unbalanced translocations. Seventeen of 24 imbalances were confirmed de novo and 19 were assumed to be causal. Excluding subtelomeric imbalances, our study identified 11 clinically relevant interstitial submicroscopic imbalances (8%). Taking this and previously reported studies into consideration, array CGH screening with a resolution of at least 1 Mb has been undertaken on 432 patients with MCA/MR. Most imbalances are non-recurrent and spread across the genome. In at least 8.8% of these patients (38 of 432) de novo intrachromosomal alterations have been identified. CONCLUSIONS: Array CGH should be considered an essential aspect of the genetic analysis of patients with MCA/MR. In addition, in the present study three patients were mosaic for a structural chromosome rearrangement. One of these patients had monosomy 7 in as few as 8% of the cells, showing that array CGH allows detection of low grade mosaicisims.status: publishe

    FAF1, a Gene that Is Disrupted in Cleft Palate and Has Conserved Function in Zebrafish

    No full text
    Cranial neural crest (CNC) is a multipotent migratory cell population that gives rise to most of the craniofacial bones. An intricate network mediates CNC formation, epithelial-mesenchymal transition, migration along distinct paths, and differentiation. Errors in these processes lead to craniofacial abnormalities, including cleft lip and palate. Clefts are the most common congenital craniofacial defects. Patients have complications with feeding, speech, hearing, and dental and psychological development. Affected by both genetic predisposition and environmental factors, the complex etiology of clefts remains largely unknown. Here we show that Fas-associated factor-1 (FAF1) is disrupted and that its expression is decreased in a Pierre Robin family with an inherited translocation. Furthermore, the locus is strongly associated with cleft palate and shows an increased relative risk. Expression studies show that faf1 is highly expressed in zebrafish cartilages during embryogenesis. Knockdown of zebrafish faf1 leads to pharyngeal cartilage defects and jaw abnormality as a result of a failure of CNC to differentiate into and express cartilage-specific markers, such as sox9a and col2a1. Administration of faf1 mRNA rescues this phenotype. Our findings therefore identify FAF1 as a regulator of CNC differentiation and show that it predisposes humans to cleft palate and is necessary for lower jaw development in zebrafish.</p

    Guidelines for molecular karyotyping in constitutional genetic diagnosis.

    No full text
    Item does not contain fulltextArray-based whole genome investigation or molecular karyotyping enables the genome-wide detection of submicroscopic imbalances. Proof-of-principle experiments have demonstrated that molecular karyotyping outperforms conventional karyotyping with regard to detection of chromosomal imbalances. This article identifies areas for which the technology seems matured and areas that require more investigations. Molecular karyotyping should be part of the genetic diagnostic work-up of patients with developmental disorders. For the implementation of the technique for other constitutional indications and in prenatal diagnosis, more research is appropriate. Also, the article aims to provide best practice guidelines for the application of array comparative genomic hybridisation to ensure both technical and clinical quality criteria that will optimise and standardise results and reports in diagnostic laboratories. In short, both the specificity and the sensitivity of the arrays should be evaluated in every laboratory offering the diagnostic test. Internal and external quality control programmes are urgently needed to evaluate and standardise the test results between laboratories

    Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome

    No full text
    corecore