498 research outputs found

    Neutrophilic eccrine hidradenitis secondary to pegfilgrastim in a patient with synovial sarcoma

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Key Clinical Message Here, we report a case of neutrophilic eccrine hidradenitis (NEH) in a teenage male with synovial sarcoma associated with extracutaneous manifestations including myositis and splenomegaly secondary to pegfilgrastim. To the best of our knowledge, NEH has not been previously reported to occur in association with extracutaneous manifestations

    Wochenbericht AL534 - FS ALKOR

    Get PDF
    21.2.2020 – 2.3.2020, La-Seyne-sur-Mer (Frankreich) - Malaga (Spanien

    Serratia marcescens necrotizing fasciitis presenting as bilateral breast necrosis

    Get PDF
    Serratia marcescens is an extremely rare cause of necrotizing fasciitis. We report the first case of necrotizing fasciitis of the chest wall due to infection with S. marcescens that initially manifested as bilateral breast necrosis. The patient had a fulminant course leading to death within 72 h of presentation. Literature pertinent to S. marcescens-mediated necrotizing fasciitis is also reviewed

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    Pathologies related to abnormal deposits in dermatology : a physico-chemical approach

    Get PDF
    Although numerous pathologies are associated with abnormal skin deposits, these remain poorly described, as accurate characterization continues to present a challenge for dermatologists. Their submicrometer size as well as their diverse chemistry require various characterization tools. We aim to exemplify characterization of endogenous and exogenous skin deposits in some selected skin diseases using different physico-chemical techniques. We begin with a presentation of selected dis-eases associated with skin deposits. We then present those of our results which show their variety of structure, location and chemical composition, obtained with various tools: Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy, X-ray fluorescence, vibra-tional spectroscopies, as well as techniques specific to synchrotron radiation. Our results constitute a real opportunity to improve diagnosis, and to understand the pathogenesis of many skin diseases, and opportunities for therapeutic intervention.Peer reviewe
    corecore