742 research outputs found

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    Neutrophilic eccrine hidradenitis secondary to pegfilgrastim in a patient with synovial sarcoma

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Key Clinical Message Here, we report a case of neutrophilic eccrine hidradenitis (NEH) in a teenage male with synovial sarcoma associated with extracutaneous manifestations including myositis and splenomegaly secondary to pegfilgrastim. To the best of our knowledge, NEH has not been previously reported to occur in association with extracutaneous manifestations

    Serratia marcescens necrotizing fasciitis presenting as bilateral breast necrosis

    Get PDF
    Serratia marcescens is an extremely rare cause of necrotizing fasciitis. We report the first case of necrotizing fasciitis of the chest wall due to infection with S. marcescens that initially manifested as bilateral breast necrosis. The patient had a fulminant course leading to death within 72 h of presentation. Literature pertinent to S. marcescens-mediated necrotizing fasciitis is also reviewed

    Wochenbericht AL534 - FS ALKOR

    Get PDF
    21.2.2020 – 2.3.2020, La-Seyne-sur-Mer (Frankreich) - Malaga (Spanien

    Tailored ß-Cyclodextrin Blocks the Translocation Pores of Binary Exotoxins from C. Botulinum and C. Perfringens and Protects Cells from Intoxication

    Get PDF
    International audienceBackgroundClostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-component on the surface of target cells and after receptor-mediated endocytosis, it mediates the translocation of the A-component from acidified endosomal vesicles into the cytosol. To this end, the B-components form heptameric pores in endosomal membranes, which serve as translocation channels for the A-components.Here we demonstrate that a 7-fold symmetrical positively charged ß-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-ß-cyclodextrin, protects cultured cells from intoxication with C2 and iota toxins in a concentration-dependent manner starting at low micromolar concentrations. We discovered that the compound inhibited the pH-dependent membrane translocation of the A-components of both toxins in intact cells. Consistently, the compound strongly blocked transmembrane channels formed by the B-components of C2 and iota toxin in planar lipid bilayers in vitro. With C2 toxin, we consecutively ruled out all other possible inhibitory mechanisms showing that the compound did not interfere with the binding of the toxin to the cells or with the enzyme activity of the A-component.Conclusions/SignificanceThe described ß-cyclodextrin derivative was previously identified as one of the most potent inhibitors of the binary lethal toxin of Bacillus anthracis both in vitro and in vivo, implying that it might represent a broad-spectrum inhibitor of binary pore-forming exotoxins from pathogenic bacteria
    corecore