70 research outputs found

    Correlation between static and dynamic polarimetric properties and the texture of surface-stabilised ferroelectric liquid crystal cells

    No full text
    International audienceSnapshot Mueller matrix polarimetry was performed for static and dynamic analyses of surface-stabilised ferroelectric liquid crystal cells under an electric field. A strong correlation between the static (at fixed voltage) and dynamic (upon field reversal) polarimetric properties and the texture of ferroelectric liquid crystal cells was established. The birefringence properties were different between a rooftop/zigzag-textured cell and a stripe-textured cell. The trajectory of the optic axis, plotted over the transition between two addressed states, was analysed for each cell. The shape of the trajectories could be explained by a reversible motion of the smectic layers while switching

    Thin-film optoacoustic transducers for the subcellular Brillouin oscillation imaging of individual biological cells

    Get PDF
    Mechanical characterisation and imaging of biological tissue has piqued interest in the applicability to cell and tissue biology. One method, based on detection of Brillouin oscillations, has already lead to demonstrations on biological cells using ultrasound in the GHz range. In this paper we present a technique to extend this picosecond laser ultrasound technique from point measurements and line scans into high resolution acoustic imaging. Our technique uses a three layered metal-dielectric-metal film under the cell as a transducer for the generation of ultrasound. The design of this transducer and measuring system is optimised to address a limiting SNR factor related to the cell fragility; its sensitivity to laser light. Our approach shields the cell from laser radiation while having acoustic generation, optical detection and aiding heat dissipation. For that, Brillouin detection is performed in transmission rather than reflection. The conditions necessary to perform successfully this kind of detection are discussed and experimental results on phantom, fixed and living cells are presented

    Nanophononics: state of the art and perspectives

    Full text link

    Layer-by-Layer Biofabrication For Bone Tissue Engineering

    No full text
    Dans diffĂ©rentes situations cliniques, la mise en place d'implants dentaires est parfois impossible du fait d'un volume osseux limitĂ©. Les mĂ©thodes actuelles de rĂ©gĂ©nĂ©ration de l'os alvĂ©olaire ne sont pas toujours satisfaisantes et la mise au point de mĂ©thodes alternatives est nĂ©cessaire pour les cas les plus complexes. De nombreux matĂ©riaux de substitution osseuse sont disponibles. Cependant ils ne possĂšdent pas toutes les propriĂ©tĂ©s nĂ©cessaires pour une rĂ©gĂ©nĂ©ration osseuse complĂšte, du fait de leur faible potentiel ostĂ©oinducteur et ostĂ©ogĂ©nique.L’ingĂ©nierie tissulaire peut apporter des solutions aux problĂšmes actuellement rencontrĂ©s en reconstruction osseuse. Ces stratĂ©gies de rĂ©gĂ©nĂ©ration tissulaire reposent sur la combinaison d’un biomatĂ©riau macroporeux (scaffold) avec des cellules et des biomolĂ©cules utilisĂ©es pour stimuler la formation tissulaire. Pour fabriquer le scaffold plusieurs techniques existent. Ces derniĂšres annĂ©es les technologies de prototypage rapide ont gagnĂ© en intĂ©rĂȘt, car elles offrent une bonne reproductibilitĂ© et une grande rĂ©solution. Il subsiste la problĂ©matique du « chargement » des cellules dans le scaffold macroporeux. L’approche conventionnelle implique de dĂ©poser les cellules sur le scaffold et d’espĂ©rer sa colonisation par les cellules pour former une construction tissulaire. Plusieurs limites ont Ă©tĂ© observĂ©es dans ce modĂšle : une faible vascularisation, une diffusion limitĂ©e des nutriments et une densitĂ© cellulaire faible et inhomogĂšne.L'objectif de ce projet de thĂšse est de rĂ©soudre une partie des limites des biomatĂ©riaux macroporeux, en organisant l'ensemencement de cellules ostĂ©oprogĂ©nitrices au sein du biomatĂ©riau. BasĂ© sur de prĂ©cĂ©dents rĂ©sultats, nous avons choisi d’adopter une approche d'assemblage couche par couche Ă©galement appelĂ©e « sandwich ». Cette approche devrait permettre de favoriser les interactions entre cellules et de faciliter la maturation des constructions tissulaires. Finalement la qualitĂ© et la quantitĂ© des tissus produits devraient ĂȘtre amĂ©liorĂ©es.La premiĂšre partie du projet a consistĂ© Ă  fabriquer des membranes poreuses. Nous avons dĂ©veloppĂ© un nouveau matĂ©riau imprimable, fait d’acide poly(lactique-co-glycolique) (PLGA) mixĂ© avec des nanoparticules d’hydroxyapatite (nHA). Le matĂ©riau fabriquĂ© sous forme de filament a pu ĂȘtre utilisĂ© pour l’impression 3D par extrusion Ă  chaud (Fused Deposition Modeling = FDM). Le PLGA a Ă©tĂ© choisi pour son temps de dĂ©gradation adaptĂ© Ă  la reconstruction osseuse et ses propriĂ©tĂ©s mĂ©caniques qui sont proches de celles de l’os humain cortical. Les nanoparticules d’HA ont Ă©tĂ© incluses afin d’amĂ©liorer la bioactivitĂ© du matĂ©riau pour des applications en ingĂ©nierie tissulaire osseuse. Ensuite, ces matĂ©riaux ont Ă©tĂ© caractĂ©risĂ©s d’un point de vue mĂ©canique et physicochimique, avant les Ă©tudes in vitro et in vivo. Pour ces parties, nous avons travaillĂ© avec la fraction vasculaire stromale issue du tissu adipeux, pour se rapprocher d’une potentielle application clinique. La survie, la prolifĂ©ration et la diffĂ©renciation des cellules a Ă©tĂ© Ă©valuĂ©e. Enfin, la rĂ©gĂ©nĂ©ration osseuse a Ă©tĂ© observĂ©e aprĂšs implantation des scaffolds dans un dĂ©faut de calvaria chez le rat.In several clinical cases, dental implant placement can be hindered if the alveolar bone volume is limited. Current surgical methods for alveolar bone regeneration are not fully satisfying, and more reliable methods to regenerate bone is needed. Several biomaterials for bone substitution are available. However, they do not possess all the necessary properties for complete bone regeneration, as they lack osteoinductive and osteogenic potential.Tissue engineering can provide solutions for current issues in bone reconstruction. Tissue engineering strategies combine engineered scaffold with cells and suitable biochemical soluble factors. To produce the scaffold several techniques are available. These last years rapid prototyping technologies gained a huge interest, as they offer reproducibility and important resolution. The current issues remaining to produce living tissue constructs by bone tissue engineering techniques are related to cell seeding inside the macroporous scaffold. The conventional approach involves seeding cells onto a macroporous scaffold and expects cell colonization to form composite tissue constructs. Many limitations have been observed using this approach, due to slow vascularization, limited diffusion of nutrients, low cell density and non-uniform cell distribution.This project aims to address the limitations of scaffold-based bone tissue engineering, by organizing osteoprogenitor cells inside the scaffold. Based on previous results, we choose to use a layer-by-layer approach. This layer-by-layer fabrication method, also called “sandwich” in this work, should favor cell-material interaction and facilitate the maturation of these constructs. Finally, the amount and quality of tissue regenerated should be enhanced.The first part of the project consisted in the fabrication of scaffolds membranes. We have developed a new material, made of medical-grade poly(lactic-co-glycolic) acid (PLGA) mixed with hydroxyapatite nanoparticles (nHA), in the shape of a filament for 3D printing by Fused Deposition Modelling (FDM). PLGA was chosen for its biodegradation rate and its mechanical properties close to human cortical bone. Nanoparticles of HA were included to improve the bioactivity of the material for bone tissue engineering applications. Then, these materials were characterized for mechanical and physico-chemical properties before in vitro and in vivo studies. In these parts, we used the stromal vascular fraction of adipose tissue, to be closer to a potential clinical translation. The survival, proliferation and differentiation of the cells were evaluated. Finally, bone regeneration was observed after implantation of the constructs in a rat bone calvaria defect model

    Génération et détection par impulsion optique femtoseconde de phonons acoustiques cohérents dans le semi-conducteur piézo-électrique d'arséniure de gallium

    No full text
    Version validĂ©e aprĂšs prise en compte des remarques des diffĂ©rents membres du Jury le 29/10/2010 Ă  13h27.The utilisation of femtoseconde laser pulses in pump probe spectroscopy techniques is an established approach to generate and to detect coherent acoustic phonons, which nanometric caracteristical wavelength is well adapted to nano-structures characterisation. Characteristics of these coherent phonons could be controlled through the opto-acoustic transformation process, which depends on optical excitation wavelength and laser intensity. The laser-matter interaction between the optical pump beam and the semi-conductor leads to the creation of different types of mechanical stress (deformation potential, thermo-elastic, electrostrictive, piezoelectric). The experiments and theoretical analysis of opto-acoustic transformation in GaAs of different doping level and crystallographic orientation had been performed. The dependence of the opto-acoustic transformation process on the fluence of pump laser radiation was revealed.L'utilisation d'impulsions laser femtoseconde en technique pompe sonde est une technique commune en vue de gĂ©nĂ©rer et dĂ©tecter des phonons acoustiques cohĂ©rents, dont les longueurs d'onde caractĂ©ristiques nanomĂ©triques sont adaptĂ©es Ă  la caractĂ©risation de nanostructures. Les caractĂ©ristiques de ces phonons cohĂ©rents peuvent ĂȘtre contrĂŽlĂ©es par la connaissance du processus de transduction optoacoustique, dĂ©pendant de la longueur d'onde d'excitation optique et de l'intensitĂ© du laser. L'interaction laser-matiĂšre entre le faisceau de pompe optique et le semiconducteur conduit Ă  l'existence de contraintes mĂ©caniques (dĂ©formation de potentiel, thermo-Ă©lastique, Ă©lectrostrictif, piĂ©zo-Ă©lectrique). Les expĂ©riences et l'analyse thĂ©orique de la transduction opto-acoustique dans le GaAs, pour diffĂ©rents niveaux de dopage et/ou orientations cristallographiques ont Ă©tĂ© menĂ©es, et la dĂ©pendance du processus de transduction avec la fluence du rayonnement laser de pompe a Ă©tĂ© mise en Ă©vidence

    Simulation of multiwavelength conditions in laser picosecond ultrasonics

    No full text
    International audienceComplete numerical simulations are given under SciLabŸ and MATLABŸ coding environments, concerning propagative acoustic wavefronts, for laser picosecond ultrasonics under multiwavelength conditions. Simulations of the deformation field and its propagation into bulk material are given under different wavelength configurations for optical pump and probe beams, which are used to generate and to detect the acoustic signal. Complete insights concerning the dynamics of the acoustic waves are given, considering the absence of carrier diffusions into the material. Several numerical approaches are proposed concerning both the functions introduced to simulate the wavefront (Heaviside or error) and the coding approach (linear/vectorized/Oriented Object Programming), under the pure thermo-elastic approach. © The Author(s) 2021

    Layer-by-Layer Biofabrication For Bone Tissue Engineering

    No full text
    Dans diffĂ©rentes situations cliniques, la mise en place d'implants dentaires est parfois impossible du fait d'un volume osseux limitĂ©. Les mĂ©thodes actuelles de rĂ©gĂ©nĂ©ration de l'os alvĂ©olaire ne sont pas toujours satisfaisantes et la mise au point de mĂ©thodes alternatives est nĂ©cessaire pour les cas les plus complexes. De nombreux matĂ©riaux de substitution osseuse sont disponibles. Cependant ils ne possĂšdent pas toutes les propriĂ©tĂ©s nĂ©cessaires pour une rĂ©gĂ©nĂ©ration osseuse complĂšte, du fait de leur faible potentiel ostĂ©oinducteur et ostĂ©ogĂ©nique.L’ingĂ©nierie tissulaire peut apporter des solutions aux problĂšmes actuellement rencontrĂ©s en reconstruction osseuse. Ces stratĂ©gies de rĂ©gĂ©nĂ©ration tissulaire reposent sur la combinaison d’un biomatĂ©riau macroporeux (scaffold) avec des cellules et des biomolĂ©cules utilisĂ©es pour stimuler la formation tissulaire. Pour fabriquer le scaffold plusieurs techniques existent. Ces derniĂšres annĂ©es les technologies de prototypage rapide ont gagnĂ© en intĂ©rĂȘt, car elles offrent une bonne reproductibilitĂ© et une grande rĂ©solution. Il subsiste la problĂ©matique du « chargement » des cellules dans le scaffold macroporeux. L’approche conventionnelle implique de dĂ©poser les cellules sur le scaffold et d’espĂ©rer sa colonisation par les cellules pour former une construction tissulaire. Plusieurs limites ont Ă©tĂ© observĂ©es dans ce modĂšle : une faible vascularisation, une diffusion limitĂ©e des nutriments et une densitĂ© cellulaire faible et inhomogĂšne.L'objectif de ce projet de thĂšse est de rĂ©soudre une partie des limites des biomatĂ©riaux macroporeux, en organisant l'ensemencement de cellules ostĂ©oprogĂ©nitrices au sein du biomatĂ©riau. BasĂ© sur de prĂ©cĂ©dents rĂ©sultats, nous avons choisi d’adopter une approche d'assemblage couche par couche Ă©galement appelĂ©e « sandwich ». Cette approche devrait permettre de favoriser les interactions entre cellules et de faciliter la maturation des constructions tissulaires. Finalement la qualitĂ© et la quantitĂ© des tissus produits devraient ĂȘtre amĂ©liorĂ©es.La premiĂšre partie du projet a consistĂ© Ă  fabriquer des membranes poreuses. Nous avons dĂ©veloppĂ© un nouveau matĂ©riau imprimable, fait d’acide poly(lactique-co-glycolique) (PLGA) mixĂ© avec des nanoparticules d’hydroxyapatite (nHA). Le matĂ©riau fabriquĂ© sous forme de filament a pu ĂȘtre utilisĂ© pour l’impression 3D par extrusion Ă  chaud (Fused Deposition Modeling = FDM). Le PLGA a Ă©tĂ© choisi pour son temps de dĂ©gradation adaptĂ© Ă  la reconstruction osseuse et ses propriĂ©tĂ©s mĂ©caniques qui sont proches de celles de l’os humain cortical. Les nanoparticules d’HA ont Ă©tĂ© incluses afin d’amĂ©liorer la bioactivitĂ© du matĂ©riau pour des applications en ingĂ©nierie tissulaire osseuse. Ensuite, ces matĂ©riaux ont Ă©tĂ© caractĂ©risĂ©s d’un point de vue mĂ©canique et physicochimique, avant les Ă©tudes in vitro et in vivo. Pour ces parties, nous avons travaillĂ© avec la fraction vasculaire stromale issue du tissu adipeux, pour se rapprocher d’une potentielle application clinique. La survie, la prolifĂ©ration et la diffĂ©renciation des cellules a Ă©tĂ© Ă©valuĂ©e. Enfin, la rĂ©gĂ©nĂ©ration osseuse a Ă©tĂ© observĂ©e aprĂšs implantation des scaffolds dans un dĂ©faut de calvaria chez le rat.In several clinical cases, dental implant placement can be hindered if the alveolar bone volume is limited. Current surgical methods for alveolar bone regeneration are not fully satisfying, and more reliable methods to regenerate bone is needed. Several biomaterials for bone substitution are available. However, they do not possess all the necessary properties for complete bone regeneration, as they lack osteoinductive and osteogenic potential.Tissue engineering can provide solutions for current issues in bone reconstruction. Tissue engineering strategies combine engineered scaffold with cells and suitable biochemical soluble factors. To produce the scaffold several techniques are available. These last years rapid prototyping technologies gained a huge interest, as they offer reproducibility and important resolution. The current issues remaining to produce living tissue constructs by bone tissue engineering techniques are related to cell seeding inside the macroporous scaffold. The conventional approach involves seeding cells onto a macroporous scaffold and expects cell colonization to form composite tissue constructs. Many limitations have been observed using this approach, due to slow vascularization, limited diffusion of nutrients, low cell density and non-uniform cell distribution.This project aims to address the limitations of scaffold-based bone tissue engineering, by organizing osteoprogenitor cells inside the scaffold. Based on previous results, we choose to use a layer-by-layer approach. This layer-by-layer fabrication method, also called “sandwich” in this work, should favor cell-material interaction and facilitate the maturation of these constructs. Finally, the amount and quality of tissue regenerated should be enhanced.The first part of the project consisted in the fabrication of scaffolds membranes. We have developed a new material, made of medical-grade poly(lactic-co-glycolic) acid (PLGA) mixed with hydroxyapatite nanoparticles (nHA), in the shape of a filament for 3D printing by Fused Deposition Modelling (FDM). PLGA was chosen for its biodegradation rate and its mechanical properties close to human cortical bone. Nanoparticles of HA were included to improve the bioactivity of the material for bone tissue engineering applications. Then, these materials were characterized for mechanical and physico-chemical properties before in vitro and in vivo studies. In these parts, we used the stromal vascular fraction of adipose tissue, to be closer to a potential clinical translation. The survival, proliferation and differentiation of the cells were evaluated. Finally, bone regeneration was observed after implantation of the constructs in a rat bone calvaria defect model

    A Basic Complete Numerical Toolbox for Picosecond Ultrasonics

    No full text
    A complete numerical complete toolbox is proposed concerning the simulation of photo-induced propagative mechanical wave, and concerning the optical reflectometric measured response of the material, which is initially exposed to a first pump laser beam that photo-induces the acoustic wavefronts. The deformation field and its propagation into a bulk material are simulated. Based on this field expression, the complex transient reflectivity is given for a medium considered as homogeneous. The real part of this quantity permits afterwards to propose a numerical simulation of the transient reflectivity, which corresponds to the optical signal measured during experimental works. The frequency acoustic spectrum is simulated and successfully compared to the measured frequency spectrum. For the first time, numerical complete developments are explicitly proposed and fully-developed under the SciLab ® environment, related to the simulation of laser-induced picosecond acoustic wavefront photogenerated through an opto-acoustic transduction process (ultrasonics and pretersonics)
    • 

    corecore