13 research outputs found

    The human keratins: biology and pathology

    Get PDF
    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family

    The Major Protein of Chloroplast Stroma, Ribulosebisphosphate Carboxylase

    No full text

    Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=2.76 TeV

    Get PDF
    AbstractWe present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0–5%, 5–10%, 10–20%, and 20–30% most central events) in Pb–Pb collisions at sNN=2.76 TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, −5.0<η<5.5, and employing a special analysis technique based on collisions arising from LHC ‘satellite’ bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles (Nch=17165±772 for the 0–5% most central collisions). From the measured dNch/dη distribution we derive the rapidity density distribution, dNch/dy, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models

    Production of charged pions, kaons and protons at large transverse momenta in pp and Pb–Pb collisions at sNN=2.76 TeV

    Get PDF
    AbstractTransverse momentum spectra of π±, K± and p(p¯) up to pT=20 GeV/c at mid-rapidity in pp, peripheral (60–80%) and central (0–5%) Pb–Pb collisions at sNN=2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at pT≈3 GeV/c in central Pb–Pb collisions. Below the peak, pT<3 GeV/c, both ratios are in good agreement with hydrodynamical calculations, suggesting that the peak itself is dominantly the result of radial flow rather than anomalous hadronization processes. For pT>10 GeV/c particle ratios in pp and Pb–Pb collisions are in agreement and the nuclear modification factors for π±, K± and p(p¯) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets

    Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at sNN=2.76 TeV

    Get PDF
    AbstractThe inclusive J/ψ nuclear modification factor (RAA) in Pb–Pb collisions at sNN=2.76 TeV has been measured by ALICE as a function of centrality in the e+e− decay channel at mid-rapidity (|y|<0.8) and as a function of centrality, transverse momentum and rapidity in the μ+μ− decay channel at forward-rapidity (2.5<y<4). The J/ψ yields measured in Pb–Pb are suppressed compared to those in pp collisions scaled by the number of binary collisions. The RAA integrated over a centrality range corresponding to 90% of the inelastic Pb–Pb cross section is 0.72±0.06(stat.)±0.10(syst.) at mid-rapidity and 0.58±0.01(stat.)±0.09(syst.) at forward-rapidity. At low transverse momentum, significantly larger values of RAA are measured at forward-rapidity compared to measurements at lower energy. These features suggest that a contribution to the J/ψ yield originates from charm quark (re)combination in the deconfined partonic medium
    corecore