2,562 research outputs found

    Hierarchical biomechanics: student engagement activities with a focus on biological physics

    Get PDF
    Hierarchical structure and mechanics are crucial in biological systems as they allow for smaller molecules, such as proteins and sugars, to be used in the construction of large scale biological structures exhibiting properties such as structural support functionality. By exploring the fundamental principles of structure and mechanics at the macroscale, this general theme provides a clear insight into how physics can be applied to the complex questions of biology. With a focus on biopolymer networks and hydrogels, we present a series of interactive activities which cover a range of biophysical concepts at an introductory level, such as viscoelasticity, biological networks and ultimately, hierarchical biomechanics. These activities enable us to discuss multidisciplinary science with a general audience and, given the current trends of research science, this conceptualisation of science is vital for the next generation of scientists

    A comparison of flexural strengths of polymer (SBR and PVA) modified, roller compacted concrete

    Get PDF
    This brief article aims to reveal the flexural performance, including the equivalent flexural strength of PVA (Polyvinyl Alcohol) modified concrete by comparing it primarily with that of SBR (Styrene Butadiene Rubber) concrete. This data article is directly related to Karadelis and Lin [6]

    Control of Nanoscale In Situ Protein Unfolding Defines Network Architecture and Mechanics of Protein Hydrogels

    Get PDF
    Hierarchical assemblies of proteins exhibit a wide-range of material properties that are exploited both in nature and by artificially by humankind. However, little is understood about the importance of protein unfolding on the network assembly, severely limiting opportunities to utilize this nanoscale transition in the development of biomimetic and bioinspired materials. Here we control the force lability of a single protein building block, bovine serum albumin (BSA), and demonstrate that protein unfolding plays a critical role in defining the architecture and mechanics of a photochemically cross-linked native protein network. The internal nanoscale structure of BSA contains “molecular reinforcement” in the form of 17 covalent disulphide “nanostaples”, preventing force-induced unfolding. Upon addition of reducing agents, these nanostaples are broken rendering the protein force labile. Employing a combination of circular dichroism (CD) spectroscopy, small-angle scattering (SAS), rheology, and modeling, we show that stapled protein forms reasonably homogeneous networks of cross-linked fractal-like clusters connected by an intercluster region of folded protein. Conversely, in situ protein unfolding results in more heterogeneous networks of denser fractal-like clusters connected by an intercluster region populated by unfolded protein. In addition, gelation-induced protein unfolding and cross-linking in the intercluster region changes the hydrogel mechanics, as measured by a 3-fold enhancement of the storage modulus, an increase in both the loss ratio and energy dissipation, and markedly different relaxation behavior. By controlling the protein’s ability to unfold through nanoscale (un)stapling, we demonstrate the importance of in situ unfolding in defining both network architecture and mechanics, providing insight into fundamental hierarchical mechanics and a route to tune biomaterials for future applications

    Feasibility and Validity of Computed Tomography-Derived Fractional Flow Reserve in Patients With Severe Aortic Stenosis: The CAST-FFR Study

    Get PDF
    BACKGROUND: Coronary artery disease is common in patients with severe aortic stenosis. Computed tomography-derived fractional flow reserve (CT-FFR) is a clinically used modality for assessing coronary artery disease, however, its use has not been validated in patients with severe aortic stenosis. This study assesses the safety, feasibility, and validity of CT-FFR in patients with severe aortic stenosis. METHODS: Prospectively recruited patients underwent standard-protocol invasive FFR and coronary CT angiography (CTA). CTA images were analyzed by central core laboratory (HeartFlow, Inc) for independent evaluation of CT-FFR. CT-FFR data were compared with FFR (ischemia defined as FFR ≤0.80). RESULTS: Forty-two patients (68 vessels) underwent FFR and CTA; 39 patients (92.3%) and 60 vessels (88.2%) had interpretable CTA enabling CT-FFR computation. Mean age was 76.2±6.7 years (71.8% male). No patients incurred complications relating to premedication, CTA, or FFR protocol. Mean FFR and CT-FFR were 0.83±0.10 and 0.77±0.14, respectively. CT calcium score was 1373.3±1392.9 Agatston units. On per vessel analysis, there was positive correlation between FFR and CT-FFR (Pearson correlation coefficient, R=0.64, P<0.0001). Sensitivity, specificity, positive predictive value, and negative predictive values were 73.9%, 78.4%, 68.0%, and 82.9%, respectively, with 76.7% diagnostic accuracy. The area under the receiver-operating characteristic curve for CT-FFR was 0.83 (0.72-0.93, P<0.0001), which was higher than that of CTA and quantitative coronary angiography (P=0.01 and P<0.001, respectively). Bland-Altman plot showed mean bias between FFR and CT-FFR as 0.059±0.110. On per patient analysis, the sensitivity, specificity, positive predictive, and negative predictive values were 76.5%, 77.3%, 72.2%, and 81.0% with 76.9% diagnostic accuracy. The per patient area under the receiver-operating characteristic curve analysis was 0.81 (0.67-0.95, P<0.0001). CONCLUSIONS: CT-FFR is safe and feasible in patients with severe aortic stenosis. Our data suggests that the diagnostic accuracy of CT-FFR in this cohort potentially enables its use in clinical practice and provides the foundation for future research into the use of CT-FFR for coronary evaluation pre-aortic valve replacement

    The role of specific biomarkers, as predictors of post-operative complications following flexible ureterorenoscopy (FURS), for the treatment of kidney stones: a single-centre observational clinical pilot-study in 37 patients

    Get PDF
    Abstract: Background: The number of patients diagnosed and subsequently treated for kidney stones is increasing, and as such the number of post-operative complications is likely to increase. At present, little is known about the role of specific biomarkers, following flexible ureterorenoscopy (FURS) for the surgical treatment of kidney stones. The main aim of the study was to evaluate the role of kidney and infection biomarkers, in patients undergoing FURS. Methods: Included were 37 patients (24 males, 13 females), who underwent elective FURS, for the treatment of kidney stones. Venous blood samples were collected from each patient: pre-operatively, and at 30 min, 2 and 4 h post-operatively. Changes to kidney (NGAL, Cystatin-C) and infection (MPO, PCT) biomarkers was quantified by means of ELISA, Biomerieux mini-vidas and Konelab 20 analysers. Results: Four patients developed post-operative complications (3 - UTIs with urinary retention, 1 - urosepsis. NGAL concentration increased significantly following FURS (p = 0.034). Although no significant changes were seen in Cystatin C, MPO and PCT (p ≥ 0.05) some key clinical observation were noted. Limiting factors for this study were the small number of patients recruited and restriction in blood sampling beyond 4 h. Conclusions: Although not confirmative, changes seen to biomarkers such as Cystatin C, NGAL and MPO in our observational clinical pilot-study may warrant further investigation, involving larger cohorts, to fully understand the role of these biomarkers and their potential association with post-operative complications which can develop following FURS

    Prioritizing Land and Sea Conservation Investments to Protect Coral Reefs

    Get PDF
    Background: Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems

    Spatial contrast sensitivity in adolescents with autism spectrum disorders

    Get PDF
    Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5-20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual acuity, peak spatial frequency, peak contrast sensitivity, and contrast sensitivity at a low spatial frequency. There were no group differences on any of the four CSF measures, indicating no differential spatial frequency processing in ASD. Although it has been suggested that detail-oriented visual perception in individuals with ASD may be a result of differential sensitivities to low versus high spatial frequencies, the current study finds no evidence to support this hypothesis
    corecore