56 research outputs found

    Severe flea infestation in dairy calves

    Get PDF
    In June 1991, an investigation was conducted of a severe flea infestation in 23 Holstein dairy calves in South Central Kansas. Inspection of the dairy revealed massive numbers of fleas on calves and in the barn where they were housed. Analysis of blood samples from 10 calves revealed that nine of them had mild to severe anemia. A management program was initiated consisting of treatments of calves and premises with insecticide and insect growth regulator and removal of straw bedding from the barn. Inspection of the dairy 9 wk after this complete control program was initiated revealed that fleas were not evident on calves or on the premises

    Effect of sarcoptic mange treatment on growth performance of pigs

    Get PDF
    Growth performance of 135 sarcoptic mange mite-infested pigs (8 pens of 15-20 pigs each) was evaluated for an 8-week period during June-August, 1985. Pigs in 6 pens were treated with the acaricide TAKTIC EC, whereas two pens were maintained as nontreated controls. Results indicated that although treatment for sarcoptic mange was effective, it did not improve average daily gains in TAKTIC EC-treated pigs.; Swine Day, Manhattan, KS, November 20, 198

    Chronological Age-Grading of House Flies by Using Near-Infrared Spectroscopy

    Get PDF
    The sensitivity and accuracy of near-infrared spectroscopy (NIRS) was compared with that of the pteridine fluorescence technique for estimating the chronological age of house flies, Musca domestica (L.). Although results with both techniques were significantly correlated with fly age, confidence limits on predicted ages generally were smaller with NIRS. Young flies could be readily differentiated from old flies by using NIRS. Age predictions using the pteridine method are dependent upon size, sex, and temperature at which adult flies are exposed. In contrast, those factors do not need to be determined for age-grading using NIRS. Classification accuracy using the NIRS method was similar for whole flies, fresh heads, dried heads, and ethanol-preserved heads. The NIRS method was also suitable for predicting age of stable flies, Stomoxys calcitrans (L.), and face flies, Musca autumnalis De Geer. NIRS has several advantages over the measurement of pteridine levels for age-grading field-collected flies, including speed and portability of instrumentation, and not needing to determine sex, size, and temperatures to which adult flies were exposed

    Immune-related genetic enrichment in frontotemporal dementia:An analysis of genome-wide association studies

    Get PDF
    Background: Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Methods and findings: Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders—namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)—and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA) region on Chromosome (Chr) 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2), TBKBP1 (TBK1 binding protein 1), and PGBD5 (piggyBac transposable element derived 5). Functionally, we found that the expression of FTD–immune pleiotropic genes (particularly within the HLA region) is altered in postmortem brain tissue from patients with FTD and is enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. Conclusions: We show immune-mediated genetic enrichment specifically in FTD, particularly within the HLA region. Our genetic results suggest that for a subset of patients, immune dysfunction may contribute to FTD risk. These findings have potential implications for clinical trials targeting immune dysfunction in patients with FTD

    Genome-wide association analysis of Parkinson's disease and schizophrenia reveals shared genetic architecture and identifies novel risk loci

    Get PDF
    Background Parkinson’s disease (PD) and schizophrenia (SCZ) are heritable brain disorders that both involve dysregulation of the dopaminergic system. Epidemiological studies have reported potential comorbidity between the disorders, and movement disturbances are common in SCZ patients before treatment with antipsychotic drugs. Despite this, little is known about shared genetic etiology between the disorders. Methods We analyzed recent large genome-wide associations studies (GWAS) on SCZ (n=77,096) and PD (n=417,508) using a conditional/conjunctional false discovery rate (FDR) approach to evaluate overlap in common genetic variants and improve statistical power for genetic discovery. Using a variety of biological resources, we functionally characterized the identified genomic loci. Results We observed genetic enrichment in PD conditional on associations with SCZ, and vice versa, indicating polygenic overlap. We then leveraged this cross-trait enrichment using conditional FDR analysis and identified nine novel PD risk loci and one novel SCZ locus at conditional FDR<0.01. Further, we identified nine genomic loci jointly associated with PD and SCZ at conjunctional FDR<0.05. There was an even distribution of antagonistic and agonistic effect directions among the shared loci, in line with the insignificant genetic correlation between the disorders. 65 out of 67 genes mapped to the shared loci are expressed in the human brain and show cell-type specific expression profiles. Conclusions Altogether, the study increases the understanding of the genetic architectures underlying SCZ and PD, indicating that common molecular genetic mechanisms may contribute to overlapping pathophysiological and clinical features between the disorders

    Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies

    Get PDF

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered

    An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients

    Get PDF
    Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in C9ORF72. Using integrative computational methods combining all omics datasets, we identified novel and known dysregulated pathways. We used a C9ORF72 Drosophila model to distinguish pathways contributing to disease phenotypes from compensatory ones and confirmed alterations in some pathways in postmortem spinal cord tissue of patients with ALS. A different differentiation protocol was used to derive a separate set of C9ORF72 and control motor neurons. Many individual -omics differed by protocol, but some core dysregulated pathways were consistent. This strategy of analyzing patient-specific neurons provides disease-related outcomes with small numbers of heterogeneous lines and reduces variation from single-omics to elucidate network-based signatures
    • …
    corecore