69 research outputs found

    Global energy growth is outpacing decarbonization

    Get PDF
    Recent reports have highlighted the challenge of keeping global average temperatures below 2 °C and—even more so—1.5 °C (IPCC 2018). Fossil-fuel burning and cement production release ~90% of all CO2 emissions from human activities. After a three-year hiatus with stable global emissions (Jackson et al 2016; Le QuĂ©rĂ© C et al 2018a ; IEA 2018), CO2 emissions grew by 1.6% in 2017 to 36.2 Gt (billion tonnes), and are expected to grow a further 2.7% in 2018 (range: 1.8%–3.7%) to a record 37.1 ± 2 Gt CO2 (Le QuĂ©rĂ© et al 2018b). Additional increases in 2019 remain uncertain but appear likely because of persistent growth in oil and natural gas use and strong growth projected for the global economy. Coal use has slowed markedly in the last few years, potentially peaking, but its future trajectory remains uncertain. Despite positive progress in ~19 countries whose economies have grown over the last decade and their emissions have declined, growth in energy use from fossil-fuel sources is still outpacing the rise of low-carbon sources and activities. A robust global economy, insufficient emission reductions in developed countries, and a need for increased energy use in developing countries where per capita emissions remain far below those of wealthier nations will continue to put upward pressure on CO2 emissions. Peak emissions will occur only when total fossil CO2 emissions finally start to decline despite growth in global energy consumption, with fossil energy production replaced by rapidly growing low- or no-carbon technologies

    The Homeobox Transcription Factor Barx2 Regulates Plasticity of Young Primary Myofibers

    Get PDF
    Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers. Such myofiber dedifferentiation has been observed in the salamander blastema where it may occur in parallel with satellite cell activation. Moreover, ectopic expression of the homeodomain transcription factor Msx1 in differentiated C2C12 myotubes has been shown to induce their dedifferentiation. While it remains unclear whether dedifferentiation and redifferentiaton occurs endogenously in mammalian muscle, there is considerable interest in induced dedifferentiation as a possible regenerative tool.We previously showed that the homeobox protein Barx2 promotes myoblast differentiation. Here we report that ectopic expression of Barx2 in young immature myotubes derived from cell lines and primary mouse myoblasts, caused cleavage of the syncytium and downregulation of differentiation markers. Microinjection of Barx2 cDNA into immature myotubes derived from primary cells led to cleavage and formation of mononucleated cells that were able to proliferate. However, injection of Barx2 cDNA into mature myotubes did not cause cleavage. Barx2 expression in C2C12 myotubes increased the expression of cyclin D1, which may promote cell cycle re-entry. We also observed differential muscle gene regulation by Barx2 at early and late stages of muscle differentiation which may be due to differential recruitment of transcriptional activator or repressor complexes to muscle specific genes by Barx2.We show that Barx2 regulates plasticity of immature myofibers and might act as a molecular switch controlling cell differentiation and proliferation

    The effect of regular walks on various health aspects in older people with dementia: protocol of a randomized-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical activity has proven to be beneficial for physical functioning, cognition, depression, anxiety, rest-activity rhythm, quality of life (QoL), activities of daily living (ADL) and pain in older people. The aim of this study is to investigate the effect of walking regularly on physical functioning, the progressive cognitive decline, level of depression, anxiety, rest-activity rhythm, QoL, ADL and pain in older people with dementia.</p> <p>Methods/design</p> <p>This study is a longitudinal randomized controlled, single blind study. Ambulatory older people with dementia, who are regular visitors of daily care or living in a home for the elderly or nursing home in the Netherlands, will be randomly allocated to the experimental or control condition. Participants of the experimental group make supervised walks of 30 minutes a day, 5 days a week, as part of their daily nursing care. Participants of the control group will come together three times a week for tea or other sedentary activities to control for possible positive effects of social interaction. All dependent variables will be assessed at baseline and after 6 weeks, and 3, 6, 9, 12 and 18 months of intervention.</p> <p>The dependent variables include neuropsychological tests to assess cognition, physical tests to determine physical functioning, questionnaires to assess ADL, QoL, level of depression and anxiety, actigraphy to assess rest-activity rhythm and pain scales to determine pain levels. Potential moderating variables at baseline are: socio-demographic characteristics, body mass index, subtype of dementia, apolipoprotein E (ApoE) genotype, medication use and comorbidities.</p> <p>Discussion</p> <p>This study evaluates the effect of regular walking as a treatment for older people with dementia. The strength of this study is that 1) it has a longitudinal design with multiple repeated measurements, 2) we assess many different health aspects, 3) the intervention is not performed by research staff, but by nursing staff which enables it to become a routine in usual care. Possible limitations of the study are that 1) only active minded institutions are willing to participate creating a selection bias, 2) the drop-out rate will be high in this population, 3) not all participants will be able to perform/understand all tests.</p> <p>Trial registration</p> <p><a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1482">NTR1482</a></p

    A putative functional role for oligodendrocytes in mood regulation

    Get PDF
    Altered glial structure and function is implicated in several major mental illnesses and increasing evidence specifically links changes in oligodendrocytes with disrupted mood regulation. Low density and reduced expression of oligodendrocyte-specific gene transcripts in postmortem human subjects points toward decreased oligodendrocyte function in most of the major mental illnesses. Similar features are observed in rodent models of stress-induced depressive-like phenotypes, such as the unpredictable chronic mild stress and chronic corticosterone exposure, suggesting an effect downstream from stress. However, whether oligodendrocyte changes are a causal component of psychiatric phenotypes is not known. Traditional views that identify oligodendrocytes solely as nonfunctional support cells are being challenged, and recent studies suggest a more dynamic role for oligodendrocytes in neuronal functioning than previously considered, with the region adjacent to the node of Ranvier (i.e., paranode) considered a critical region of glial–neuronal interaction. Here, we briefly review the current knowledge regarding oligodendrocyte disruptions in psychiatric disorders and related animal models, with a focus on major depression. We then highlight several rodent studies, which suggest that alterations in oligodendrocyte structure and function can produce behavioral changes that are informative of mood regulatory mechanisms. Together, these studies suggest a model, whereby impaired oligodendrocyte and possibly paranode structure and function can impact neural circuitry, leading to downstream effects related to emotionality in rodents, and potentially to mood regulation in human psychiatric disorders

    Functional correlates of skull shape in Chiroptera: feeding and echolocation adaptations.

    Get PDF
    Morphological, functional and behavioural adaptations of bats are among the most diverse within mammals. A strong association between bat skull morphology and feeding behaviour has been suggested previously. However, morphological variation related to other drivers of adaptation, in particular echolocation, remains understudied. We assessed variation in skull morphology with respect to ecology (diet and emission type) and function (bite force, masticatory muscles and echolocation characteristics) using geometric morphometrics and comparative methods. Our study suggests that variation in skull shape of 10 bat families is the result of adaptations to broad dietary categories and sound emission types (oral or nasal). Skull shape correlates with echolocation parameters only in a subsample of insectivorous species, possibly because they (almost) entirely rely on this sensory system for locating and capturing prey. Insectivores emitting low frequencies are characterised by a ventrally tilted rostrum, a trait not associated with feeding parameters. This result questions the validity of a trade-off between feeding and echolocation function. Our study advances understanding of the relationship between skull morphology and specific features of echolocation and suggests that evolutionary constraints due to echolocation may differ between different groups within the Chiroptera

    Insatisfação corporal em gestantes: uma revisão integrativa da literatura

    Get PDF
    Resumo A imagem corporal de gestantes deve ser alvo de atenção por parte dos profissionais, tendo em vista a promoção da saĂșde materna infantil. O objetivo da presente revisĂŁo integrativa foi analisar a literatura sobre imagem e insatisfação corporal em gestantes. Foram buscados artigos nas bases de dados Scopus, PubMed, BVS e PsycINFO utilizando o cruzamento de “pregnancy” com as palavras-chave: “body image” e “body dissatisfaction”. ApĂłs a adoção dos critĂ©rios de inclusĂŁo e exclusĂŁo foram analisados 40 estudos. Estes apontam dados inconclusivos quanto Ă  insatisfação corporal durante a gestação. Presença de sintomas depressivos, baixa autoestima, atitude alimentar inadequada e ganho de peso fora dos limites recomendados tĂȘm sido associados a uma imagem corporal negativa. ContradiçÔes nos achados podem estar relacionados Ă s diferenças nos instrumentos utilizados para mensurar a imagem corporal. Pelo possĂ­vel impacto de uma imagem corporal negativa durante a gestação na saĂșde materna e infantil, sĂŁo recomendadas novas investigaçÔes, em especial o desenvolvimento de um instrumento avaliativo de imagem corporal especĂ­fico para gestantes
    • 

    corecore